class UnboundMethod
Ruby 支持两种形式的对象化方法。 Class
Method
用于表示与特定对象关联的方法:这些方法对象绑定到该对象。可以使用 Object#method
创建对象的绑定方法对象。
Ruby 还支持未绑定方法;即未与特定对象关联的方法对象。可以通过调用 Module#instance_method
或在绑定方法对象上调用 unbind 来创建这些对象。 这两种方法的结果都是一个 UnboundMethod
对象。
未绑定方法只有在绑定到对象后才能调用。 该对象必须是该方法原始类的 kind_of?。
class Square def area @side * @side end def initialize(side) @side = side end end area_un = Square.instance_method(:area) s = Square.new(12) area = area_un.bind(s) area.call #=> 144
未绑定方法是指向方法在被对象化时的引用:对底层类的后续更改不会影响未绑定方法。
class Test def test :original end end um = Test.instance_method(:test) class Test def test :modified end end t = Test.new t.test #=> :modified um.bind(t).call #=> :original
公共实例方法
如果两个未绑定方法对象引用相同的方法定义,则它们相等。
Array.instance_method(:each_slice) == Enumerable.instance_method(:each_slice) #=> true Array.instance_method(:sum) == Enumerable.instance_method(:sum) #=> false, Array redefines the method for efficiency
#define unbound_method_eq method_eq
返回方法接受的参数数量的指示。 对于接受固定数量参数的方法,返回一个非负整数。 对于接受可变数量参数的 Ruby 方法,返回 -n-1,其中 n 是必需参数的数量。 关键字参数将被视为一个额外的参数,如果任何关键字参数是必需的,则该参数是强制的。 对于用 C 编写的方法,如果调用接受可变数量的参数,则返回 -1。
class C def one; end def two(a); end def three(*a); end def four(a, b); end def five(a, b, *c); end def six(a, b, *c, &d); end def seven(a, b, x:0); end def eight(x:, y:); end def nine(x:, y:, **z); end def ten(*a, x:, y:); end end c = C.new c.method(:one).arity #=> 0 c.method(:two).arity #=> 1 c.method(:three).arity #=> -1 c.method(:four).arity #=> 2 c.method(:five).arity #=> -3 c.method(:six).arity #=> -3 c.method(:seven).arity #=> -3 c.method(:eight).arity #=> 1 c.method(:nine).arity #=> 1 c.method(:ten).arity #=> -2 "cat".method(:size).arity #=> 0 "cat".method(:replace).arity #=> 1 "cat".method(:squeeze).arity #=> -1 "cat".method(:count).arity #=> -1
static VALUE method_arity_m(VALUE method) { int n = method_arity(method); return INT2FIX(n); }
将 umeth 绑定到 obj。如果 Klass 是从中获取 umeth 的类,则 obj.kind_of?(Klass)
必须为 true。
class A def test puts "In test, class = #{self.class}" end end class B < A end class C < B end um = B.instance_method(:test) bm = um.bind(C.new) bm.call bm = um.bind(B.new) bm.call bm = um.bind(A.new) bm.call
产生
In test, class = C In test, class = B prog.rb:16:in `bind': bind argument must be an instance of B (TypeError) from prog.rb:16
static VALUE umethod_bind(VALUE method, VALUE recv) { VALUE methclass, klass, iclass; const rb_method_entry_t *me; const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, true); struct METHOD *bound; method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound); RB_OBJ_WRITE(method, &bound->recv, recv); RB_OBJ_WRITE(method, &bound->klass, klass); RB_OBJ_WRITE(method, &bound->iclass, iclass); RB_OBJ_WRITE(method, &bound->owner, methclass); RB_OBJ_WRITE(method, &bound->me, me); return method; }
将 umeth 绑定到 recv,然后使用指定的参数调用该方法。这在语义上等同于 umeth.bind(recv).call(args, ...)
。
static VALUE umethod_bind_call(int argc, VALUE *argv, VALUE method) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); VALUE recv = argv[0]; argc--; argv++; VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil; rb_execution_context_t *ec = GET_EC(); const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id); if (data->me == (const rb_method_entry_t *)cme) { vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval)); return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS); } else { VALUE methclass, klass, iclass; const rb_method_entry_t *me; convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, false); struct METHOD bound = { recv, klass, 0, methclass, me }; return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS); } }
返回此方法的克隆。
class A def foo return "bar" end end m = A.new.method(:foo) m.call # => "bar" n = m.clone.call # => "bar"
static VALUE method_clone(VALUE self) { VALUE clone; struct METHOD *orig, *data; TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig); clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data); rb_obj_clone_setup(self, clone, Qnil); RB_OBJ_WRITE(clone, &data->recv, orig->recv); RB_OBJ_WRITE(clone, &data->klass, orig->klass); RB_OBJ_WRITE(clone, &data->iclass, orig->iclass); RB_OBJ_WRITE(clone, &data->owner, orig->owner); RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me)); return clone; }
如果两个未绑定方法对象引用相同的方法定义,则它们相等。
Array.instance_method(:each_slice) == Enumerable.instance_method(:each_slice) #=> true Array.instance_method(:sum) == Enumerable.instance_method(:sum) #=> false, Array redefines the method for efficiency
返回与方法对象对应的哈希值。
另请参阅 Object#hash
。
static VALUE method_hash(VALUE method) { struct METHOD *m; st_index_t hash; TypedData_Get_Struct(method, struct METHOD, &method_data_type, m); hash = rb_hash_start((st_index_t)m->recv); hash = rb_hash_method_entry(hash, m->me); hash = rb_hash_end(hash); return ST2FIX(hash); }
返回底层方法的人类可读描述。
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
在后一种情况下,方法描述包括原始方法的“所有者”(Enumerable
模块,该模块包含在 Range
中)。
inspect
还会尽可能提供方法参数名称(调用顺序)和源代码位置。
require 'net/http' Net::HTTP.method(:get).inspect #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
参数定义中的 ...
表示参数是可选的(具有一些默认值)。
对于在 C 中定义的方法(语言核心和扩展),无法提取位置和参数名称,并且仅以 *
(任意数量的参数)或 _
(一些位置参数)的形式提供通用信息。
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" "cat".method(:+).inspect #=> "#<Method: String#+(_)>""
static VALUE method_inspect(VALUE method) { struct METHOD *data; VALUE str; const char *sharp = "#"; VALUE mklass; VALUE defined_class; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method)); mklass = data->iclass; if (!mklass) mklass = data->klass; if (RB_TYPE_P(mklass, T_ICLASS)) { /* TODO: I'm not sure why mklass is T_ICLASS. * UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components() * but not sure it is needed. */ mklass = RBASIC_CLASS(mklass); } if (data->me->def->type == VM_METHOD_TYPE_ALIAS) { defined_class = data->me->def->body.alias.original_me->owner; } else { defined_class = method_entry_defined_class(data->me); } if (RB_TYPE_P(defined_class, T_ICLASS)) { defined_class = RBASIC_CLASS(defined_class); } if (UNDEF_P(data->recv)) { // UnboundMethod rb_str_buf_append(str, rb_inspect(defined_class)); } else if (RCLASS_SINGLETON_P(mklass)) { VALUE v = RCLASS_ATTACHED_OBJECT(mklass); if (UNDEF_P(data->recv)) { rb_str_buf_append(str, rb_inspect(mklass)); } else if (data->recv == v) { rb_str_buf_append(str, rb_inspect(v)); sharp = "."; } else { rb_str_buf_append(str, rb_inspect(data->recv)); rb_str_buf_cat2(str, "("); rb_str_buf_append(str, rb_inspect(v)); rb_str_buf_cat2(str, ")"); sharp = "."; } } else { mklass = data->klass; if (RCLASS_SINGLETON_P(mklass)) { VALUE v = RCLASS_ATTACHED_OBJECT(mklass); if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) { do { mklass = RCLASS_SUPER(mklass); } while (RB_TYPE_P(mklass, T_ICLASS)); } } rb_str_buf_append(str, rb_inspect(mklass)); if (defined_class != mklass) { rb_str_catf(str, "(% "PRIsVALUE")", defined_class); } } rb_str_buf_cat2(str, sharp); rb_str_append(str, rb_id2str(data->me->called_id)); if (data->me->called_id != data->me->def->original_id) { rb_str_catf(str, "(%"PRIsVALUE")", rb_id2str(data->me->def->original_id)); } if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) { rb_str_buf_cat2(str, " (not-implemented)"); } // parameter information { VALUE params = rb_method_parameters(method); VALUE pair, name, kind; const VALUE req = ID2SYM(rb_intern("req")); const VALUE opt = ID2SYM(rb_intern("opt")); const VALUE keyreq = ID2SYM(rb_intern("keyreq")); const VALUE key = ID2SYM(rb_intern("key")); const VALUE rest = ID2SYM(rb_intern("rest")); const VALUE keyrest = ID2SYM(rb_intern("keyrest")); const VALUE block = ID2SYM(rb_intern("block")); const VALUE nokey = ID2SYM(rb_intern("nokey")); int forwarding = 0; rb_str_buf_cat2(str, "("); if (RARRAY_LEN(params) == 3 && RARRAY_AREF(RARRAY_AREF(params, 0), 0) == rest && RARRAY_AREF(RARRAY_AREF(params, 0), 1) == ID2SYM('*') && RARRAY_AREF(RARRAY_AREF(params, 1), 0) == keyrest && RARRAY_AREF(RARRAY_AREF(params, 1), 1) == ID2SYM(idPow) && RARRAY_AREF(RARRAY_AREF(params, 2), 0) == block && RARRAY_AREF(RARRAY_AREF(params, 2), 1) == ID2SYM('&')) { forwarding = 1; } for (int i = 0; i < RARRAY_LEN(params); i++) { pair = RARRAY_AREF(params, i); kind = RARRAY_AREF(pair, 0); name = RARRAY_AREF(pair, 1); // FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?.. if (NIL_P(name) || name == Qfalse) { // FIXME: can it be reduced to switch/case? if (kind == req || kind == opt) { name = rb_str_new2("_"); } else if (kind == rest || kind == keyrest) { name = rb_str_new2(""); } else if (kind == block) { name = rb_str_new2("block"); } else if (kind == nokey) { name = rb_str_new2("nil"); } } if (kind == req) { rb_str_catf(str, "%"PRIsVALUE, name); } else if (kind == opt) { rb_str_catf(str, "%"PRIsVALUE"=...", name); } else if (kind == keyreq) { rb_str_catf(str, "%"PRIsVALUE":", name); } else if (kind == key) { rb_str_catf(str, "%"PRIsVALUE": ...", name); } else if (kind == rest) { if (name == ID2SYM('*')) { rb_str_cat_cstr(str, forwarding ? "..." : "*"); } else { rb_str_catf(str, "*%"PRIsVALUE, name); } } else if (kind == keyrest) { if (name != ID2SYM(idPow)) { rb_str_catf(str, "**%"PRIsVALUE, name); } else if (i > 0) { rb_str_set_len(str, RSTRING_LEN(str) - 2); } else { rb_str_cat_cstr(str, "**"); } } else if (kind == block) { if (name == ID2SYM('&')) { if (forwarding) { rb_str_set_len(str, RSTRING_LEN(str) - 2); } else { rb_str_cat_cstr(str, "..."); } } else { rb_str_catf(str, "&%"PRIsVALUE, name); } } else if (kind == nokey) { rb_str_buf_cat2(str, "**nil"); } if (i < RARRAY_LEN(params) - 1) { rb_str_buf_cat2(str, ", "); } } rb_str_buf_cat2(str, ")"); } { // source location VALUE loc = rb_method_location(method); if (!NIL_P(loc)) { rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE, RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1)); } } rb_str_buf_cat2(str, ">"); return str; }
返回方法的名称。
static VALUE method_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->me->called_id); }
返回方法的原始名称。
class C def foo; end alias bar foo end C.instance_method(:bar).original_name # => :foo
static VALUE method_original_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->me->def->original_id); }
返回定义此方法的类或模块。换句话说,
meth.owner.instance_methods(false).include?(meth.name) # => true
只要方法没有被删除/未定义/替换,就成立(如果方法是私有的,则使用 private_instance_methods 代替 instance_methods)。
另请参阅 Method#receiver
。
(1..3).method(:map).owner #=> Enumerable
static VALUE method_owner(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return data->owner; }
返回此方法的参数信息。
def foo(bar); end method(:foo).parameters #=> [[:req, :bar]] def foo(bar, baz, bat, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] def foo(bar, *args); end method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] def foo(bar, baz, *args, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
static VALUE rb_method_parameters(VALUE method) { return method_def_parameters(rb_method_def(method)); }
返回包含此方法的 Ruby 源文件名和行号,如果此方法不是在 Ruby 中定义的(即 native),则返回 nil。
VALUE rb_method_location(VALUE method) { return method_def_location(rb_method_def(method)); }
返回一个当使用 super 时将调用的超类的 Method
,如果超类上没有方法,则返回 nil。
static VALUE method_super_method(VALUE method) { const struct METHOD *data; VALUE super_class, iclass; ID mid; const rb_method_entry_t *me; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); iclass = data->iclass; if (!iclass) return Qnil; if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) { super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class, data->me->def->body.alias.original_me->owner)); mid = data->me->def->body.alias.original_me->def->original_id; } else { super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass)); mid = data->me->def->original_id; } if (!super_class) return Qnil; me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass); if (!me) return Qnil; return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE); }
返回底层方法的人类可读描述。
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
在后一种情况下,方法描述包括原始方法的“所有者”(Enumerable
模块,该模块包含在 Range
中)。
inspect
还会尽可能提供方法参数名称(调用顺序)和源代码位置。
require 'net/http' Net::HTTP.method(:get).inspect #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
参数定义中的 ...
表示参数是可选的(具有一些默认值)。
对于在 C 中定义的方法(语言核心和扩展),无法提取位置和参数名称,并且仅以 *
(任意数量的参数)或 _
(一些位置参数)的形式提供通用信息。
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" "cat".method(:+).inspect #=> "#<Method: String#+(_)>""