模块 Math

模块 Math 提供了基本三角函数、对数函数、超越函数以及提取根的方法。

您可以这样书写它的常量和方法调用:

Math::PI      # => 3.141592653589793
Math::E       # => 2.718281828459045
Math.sin(0.0) # => 0.0
Math.cos(0.0) # => 1.0

如果您包含模块 Math,您可以书写更简单的形式:

include Math
PI       # => 3.141592653589793
E        # => 2.718281828459045
sin(0.0) # => 0.0
cos(0.0) # => 1.0

为了简单起见,此处的示例假设:

include Math
INFINITY = Float::INFINITY

方法的定义域和值域用开区间或闭区间表示,分别使用括号或方括号。

  • 开区间不包含端点。

    (-INFINITY, INFINITY)
  • 闭区间包含端点。

    [-1.0, 1.0]
    
  • 半开区间包含一个端点,但不包含另一个端点。

    [1.0, INFINITY)

Math 方法返回的许多值都是数值近似值。这是因为在数学中,许多这样的值都具有无限精度,而在数值计算中,精度是有限的。

因此,在数学中,cos(π/2) 完全是零,但在我们的计算中,cos(PI/2) 是一个非常接近于零的数字。

cos(PI/2) # => 6.123031769111886e-17

对于非常大和非常小的返回值,为了清晰起见,我们添加了格式化的数字。

tan(PI/2)  # => 1.633123935319537e+16   # 16331239353195370.0
tan(PI)    # => -1.2246467991473532e-16 # -0.0000000000000001

有关影响 Ruby 浮点运算的常量,请参阅 Float 类。

内容概要

三角函数

  • ::cos: 返回给定参数的余弦值。

  • ::sin: 返回给定参数的正弦值。

  • ::tan: 返回给定参数的正切值。

反三角函数

  • ::acos: 返回给定参数的反余弦值。

  • ::asin: 返回给定参数的反正弦值。

  • ::atan: 返回给定参数的反正切值。

  • ::atan2: 返回两个给定参数的反正切值。

双曲三角函数

  • ::cosh: 返回给定参数的双曲余弦值。

  • ::sinh: 返回给定参数的双曲正弦值。

  • ::tanh: 返回给定参数的双曲正切值。

反双曲三角函数

  • ::acosh: 返回给定参数的反双曲余弦值。

  • ::asinh: 返回给定参数的反双曲正弦值。

  • ::atanh: 返回给定参数的反双曲正切值。

指数和对数函数

  • ::exp: 返回给定值的给定次幂的值。

  • ::log: 返回给定底数的给定值的对数。

  • ::log10: 返回给定参数的以 10 为底的对数。

  • ::log2: 返回给定参数的以 2 为底的对数。

分数和指数函数

  • ::frexp: 返回给定参数的分数和指数。

  • ::ldexp: 返回给定分数和指数的值。

根函数

  • ::cbrt: 返回给定参数的立方根。

  • ::sqrt: 返回给定参数的平方根。

误差函数

  • ::erf: 返回给定参数的高斯误差函数的值。

  • ::erfc: 返回给定参数的互补误差函数的值。

伽马函数

  • ::gamma: 返回给定参数的伽马函数值。

  • ::lgamma: 返回给定参数的对数伽马函数值。

斜边函数

  • ::hypot: 返回给定 absqrt(a**2 + b**2)

常量

E

将数学常数 E 定义为欧拉数 (e) 的 Float 数字。

PI

将数学常数 PI 定义为 Float 数字。

公共类方法

acos(x) → float 点击以切换源

返回 x反余弦值。

  • 定义域:[-1, 1]

  • 值域:[0, PI]

示例

acos(-1.0) # => 3.141592653589793  # PI
acos(0.0)  # => 1.5707963267948966 # PI/2
acos(1.0)  # => 0.0
static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
    math_arc(x, acos)
}
acosh(x) → float 点击以切换源

返回 x反双曲余弦值。

  • 定义域:[1, INFINITY]

  • 值域:[0, INFINITY]

示例

acosh(1.0)      # => 0.0
acosh(INFINITY) # => Infinity
static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    domain_check_min(d, 1.0, "acosh");
    return DBL2NUM(acosh(d));
}
asin(x) → float 点击以切换源

返回 x反正弦值。

  • 定义域:[-1, -1]

  • 值域:[-PI/2, PI/2]

示例

asin(-1.0) # => -1.5707963267948966 # -PI/2
asin(0.0)  # => 0.0
asin(1.0)  # => 1.5707963267948966  # PI/2
static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
    math_arc(x, asin)
}
asinh(x) → float 点击以切换源

返回 x反双曲正弦值。

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[-INFINITY, INFINITY]

示例

asinh(-INFINITY) # => -Infinity
asinh(0.0)       # => 0.0
asinh(INFINITY)  # => Infinity
static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(asinh(Get_Double(x)));
}
atan(x) → Float 点击以切换源

返回 x反正切值。

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[-PI/2, PI/2]

示例

atan(-INFINITY) # => -1.5707963267948966 # -PI2
atan(-PI)       # => -1.2626272556789115
atan(-PI/2)     # => -1.0038848218538872
atan(0.0)       # => 0.0
atan(PI/2)      # => 1.0038848218538872
atan(PI)        # => 1.2626272556789115
atan(INFINITY)  # => 1.5707963267948966  # PI/2
static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(atan(Get_Double(x)));
}
atan2(y, x) → float 点击以切换源

返回 yx反正切值(以弧度表示)。

  • y 的定义域:[-INFINITY, INFINITY]

  • x 的定义域:[-INFINITY, INFINITY]

  • 值域:[-PI, PI]

示例

atan2(-1.0, -1.0) # => -2.356194490192345  # -3*PI/4
atan2(-1.0, 0.0)  # => -1.5707963267948966 # -PI/2
atan2(-1.0, 1.0)  # => -0.7853981633974483 # -PI/4
atan2(0.0, -1.0)  # => 3.141592653589793   # PI
static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
    double dx, dy;
    dx = Get_Double(x);
    dy = Get_Double(y);
    if (dx == 0.0 && dy == 0.0) {
        if (!signbit(dx))
            return DBL2NUM(dy);
        if (!signbit(dy))
            return DBL2NUM(M_PI);
        return DBL2NUM(-M_PI);
    }
#ifndef ATAN2_INF_C99
    if (isinf(dx) && isinf(dy)) {
        /* optimization for FLONUM */
        if (dx < 0.0) {
            const double dz = (3.0 * M_PI / 4.0);
            return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
        }
        else {
            const double dz = (M_PI / 4.0);
            return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
        }
    }
#endif
    return DBL2NUM(atan2(dy, dx));
}
atanh(x) → float 点击以切换源

返回 x反双曲正切值。

  • 定义域:[-1, 1]

  • 值域:[-INFINITY, INFINITY]

示例

atanh(-1.0) # => -Infinity
atanh(0.0)  # => 0.0
atanh(1.0)  # => Infinity
static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    domain_check_range(d, -1.0, +1.0, "atanh");
    /* check for pole error */
    if (d == -1.0) return DBL2NUM(-HUGE_VAL);
    if (d == +1.0) return DBL2NUM(+HUGE_VAL);
    return DBL2NUM(atanh(d));
}
cbrt(x) → float 点击以切换源

返回 x立方根

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[-INFINITY, INFINITY]

示例

cbrt(-INFINITY) # => -Infinity
cbrt(-27.0)     # => -3.0
cbrt(-8.0)      # => -2.0
cbrt(-2.0)      # => -1.2599210498948732
cbrt(1.0)       # => 1.0
cbrt(0.0)       # => 0.0
cbrt(1.0)       # => 1.0
cbrt(2.0)       # => 1.2599210498948732
cbrt(8.0)       # => 2.0
cbrt(27.0)      # => 3.0
cbrt(INFINITY)  # => Infinity
static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
    double f = Get_Double(x);
    double r = cbrt(f);
#if defined __GLIBC__
    if (isfinite(r) && !(f == 0.0 && r == 0.0)) {
        r = (2.0 * r + (f / r / r)) / 3.0;
    }
#endif
    return DBL2NUM(r);
}
cos(x) → float 点击以切换源

返回 x余弦值(以弧度表示)。

  • 定义域:(-INFINITY, INFINITY)

  • 值域:[-1.0, 1.0]

示例

cos(-PI)   # => -1.0
cos(-PI/2) # => 6.123031769111886e-17 # 0.0000000000000001
cos(0.0)   # => 1.0
cos(PI/2)  # => 6.123031769111886e-17 # 0.0000000000000001
cos(PI)    # => -1.0
static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cos(Get_Double(x)));
}
cosh(x) → float 点击以切换源

返回 x双曲余弦值(以弧度表示)。

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[1, INFINITY]

示例

cosh(-INFINITY) # => Infinity
cosh(0.0)       # => 1.0
cosh(INFINITY)  # => Infinity
static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cosh(Get_Double(x)));
}
erf(x) → float 点击以切换源

返回 x高斯误差函数的值。

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[-1, 1]

示例

erf(-INFINITY) # => -1.0
erf(0.0)       # => 0.0
erf(INFINITY)  # => 1.0

相关:Math.erfc

static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erf(Get_Double(x)));
}
erfc(x) → Float 点击以切换源

返回 x互补误差函数的值。

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[0, 2]

示例

erfc(-INFINITY) # => 2.0
erfc(0.0)       # => 1.0
erfc(INFINITY)  # => 0.0

相关:Math.erf

static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erfc(Get_Double(x)));
}
exp(x) → float 点击以切换源

返回 ex 次幂。

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[0, INFINITY]

示例

exp(-INFINITY) # => 0.0
exp(-1.0)      # => 0.36787944117144233 # 1.0/E
exp(0.0)       # => 1.0
exp(0.5)       # => 1.6487212707001282  # sqrt(E)
exp(1.0)       # => 2.718281828459045   # E
exp(2.0)       # => 7.38905609893065    # E**2
exp(INFINITY)  # => Infinity
static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(exp(Get_Double(x)));
}
frexp(x) → [fraction, exponent] 点击以切换源

返回一个包含 x 的归一化有符号浮点数 fraction 和整数 exponent 的双元素数组,使得:

x = fraction * 2**exponent

参见 IEEE 754 双精度二进制浮点格式:binary64

  • 定义域:[-INFINITY, INFINITY]

  • Range [-INFINITY, INFINITY]

示例

frexp(-INFINITY) # => [-Infinity, -1]
frexp(-2.0)      # => [-0.5, 2]
frexp(-1.0)      # => [-0.5, 1]
frexp(0.0)       # => [0.0, 0]
frexp(1.0)       # => [0.5, 1]
frexp(2.0)       # => [0.5, 2]
frexp(INFINITY)  # => [Infinity, -1]

相关:Math.ldexpMath.frexp 的逆函数)。

static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
    double d;
    int exp;

    d = frexp(Get_Double(x), &exp);
    return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
gamma(x) → float 点击以切换源

返回 x伽马函数的值。

  • 定义域:(-INFINITY, INFINITY],不包括负整数。

  • 值域:[-INFINITY, INFINITY]

示例

gamma(-2.5)      # => -0.9453087204829431
gamma(-1.5)      # => 2.3632718012073513
gamma(-0.5)      # => -3.5449077018110375
gamma(0.0)      # => Infinity
gamma(1.0)      # => 1.0
gamma(2.0)      # => 1.0
gamma(3.0)      # => 2.0
gamma(4.0)      # => 6.0
gamma(5.0)      # => 24.0

相关:Math.lgamma

static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
    static const double fact_table[] = {
        /* fact(0) */ 1.0,
        /* fact(1) */ 1.0,
        /* fact(2) */ 2.0,
        /* fact(3) */ 6.0,
        /* fact(4) */ 24.0,
        /* fact(5) */ 120.0,
        /* fact(6) */ 720.0,
        /* fact(7) */ 5040.0,
        /* fact(8) */ 40320.0,
        /* fact(9) */ 362880.0,
        /* fact(10) */ 3628800.0,
        /* fact(11) */ 39916800.0,
        /* fact(12) */ 479001600.0,
        /* fact(13) */ 6227020800.0,
        /* fact(14) */ 87178291200.0,
        /* fact(15) */ 1307674368000.0,
        /* fact(16) */ 20922789888000.0,
        /* fact(17) */ 355687428096000.0,
        /* fact(18) */ 6402373705728000.0,
        /* fact(19) */ 121645100408832000.0,
        /* fact(20) */ 2432902008176640000.0,
        /* fact(21) */ 51090942171709440000.0,
        /* fact(22) */ 1124000727777607680000.0,
        /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
         * impossible to represent exactly in IEEE 754 double which have
         * 53bit mantissa. */
    };
    enum {NFACT_TABLE = numberof(fact_table)};
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
        if (signbit(d)) domain_error("gamma");
        return DBL2NUM(HUGE_VAL);
    }
    if (d == 0.0) {
        return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
    }
    if (d == floor(d)) {
        domain_check_min(d, 0.0, "gamma");
        if (1.0 <= d && d <= (double)NFACT_TABLE) {
            return DBL2NUM(fact_table[(int)d - 1]);
        }
    }
    return DBL2NUM(tgamma(d));
}
hypot(a, b) → float 点击以切换源

返回 sqrt(a**2 + b**2),它是直角三角形的最长边 c(斜边)的长度,该三角形的其他边的长度分别为 ab

  • a 的定义域:[-INFINITY, INFINITY]

  • ab 的定义域:[-INFINITY, INFINITY]

  • 值域:[0, INFINITY]

示例

hypot(0.0, 1.0)       # => 1.0
hypot(1.0, 1.0)       # => 1.4142135623730951 # sqrt(2.0)
hypot(3.0, 4.0)       # => 5.0
hypot(5.0, 12.0)      # => 13.0
hypot(1.0, sqrt(3.0)) # => 1.9999999999999998 # Near 2.0

请注意,如果任一参数是 INFINITY-INFINITY,则结果为 Infinity

static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
    return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}
ldexp(fraction, exponent) → float 点击以切换源

返回 fraction * 2**exponent 的值。

  • fraction 的定义域:[0.0, 1.0)

  • exponent 的定义域:[0, 1024](更大的值等效于 1024)。

参见 IEEE 754 双精度二进制浮点格式:binary64

示例

ldexp(-INFINITY, -1) # => -Infinity
ldexp(-0.5, 2)       # => -2.0
ldexp(-0.5, 1)       # => -1.0
ldexp(0.0, 0)        # => 0.0
ldexp(-0.5, 1)       # => 1.0
ldexp(-0.5, 2)       # => 2.0
ldexp(INFINITY, -1)  # => Infinity

相关:Math.frexpMath.ldexp 的逆函数)。

static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
    return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}
lgamma(x) → [float, -1 or 1] 点击以切换源

返回等效于以下内容的双元素数组:

[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]

参见对数伽马函数

  • 定义域:(-INFINITY, INFINITY]

  • 第一个元素的Range(-INFINITY, INFINITY]

  • 第二个元素是 -1 或 1。

示例

lgamma(-4.0) # => [Infinity, -1]
lgamma(-3.0) # => [Infinity, -1]
lgamma(-2.0) # => [Infinity, -1]
lgamma(-1.0) # => [Infinity, -1]
lgamma(0.0)  # => [Infinity, 1]

lgamma(1.0)  # => [0.0, 1]
lgamma(2.0)  # => [0.0, 1]
lgamma(3.0)  # => [0.6931471805599436, 1]
lgamma(4.0)  # => [1.7917594692280545, 1]

lgamma(-2.5) # => [-0.05624371649767279, -1]
lgamma(-1.5) # => [0.8600470153764797, 1]
lgamma(-0.5) # => [1.265512123484647, -1]
lgamma(0.5)  # => [0.5723649429247004, 1]
lgamma(1.5)  # => [-0.12078223763524676, 1]
lgamma(2.5)      # => [0.2846828704729205, 1]

相关:Math.gamma

static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
    double d;
    int sign=1;
    VALUE v;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
        if (signbit(d)) domain_error("lgamma");
        return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1));
    }
    if (d == 0.0) {
        VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1);
        return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign);
    }
    v = DBL2NUM(lgamma_r(d, &sign));
    return rb_assoc_new(v, INT2FIX(sign));
}
log(x, base = Math::E) → Float 点击以切换源

返回 x 的以 base 为底的对数

  • 定义域:[0, INFINITY]

  • 值域:[-INFINITY, INFINITY)]

示例

log(0.0)        # => -Infinity
log(1.0)        # => 0.0
log(E)          # => 1.0
log(INFINITY)   # => Infinity

log(0.0, 2.0)   # => -Infinity
log(1.0, 2.0)   # => 0.0
log(2.0, 2.0)   # => 1.0

log(0.0, 10.0)  # => -Infinity
log(1.0, 10.0)  # => 0.0
log(10.0, 10.0) # => 1.0
static VALUE
math_log(int argc, const VALUE *argv, VALUE unused_obj)
{
    return rb_math_log(argc, argv);
}
log10(x) → float 点击以切换源

返回 x 的以 10 为底的对数

  • 定义域:[0, INFINITY]

  • 值域:[-INFINITY, INFINITY]

示例

log10(0.0)      # => -Infinity
log10(1.0)      # => 0.0
log10(10.0)     # => 1.0
log10(INFINITY) # => Infinity
static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);

    domain_check_min(d, 0.0, "log10");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);

    return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}
log2(x) → float 点击以切换源

返回 x 的以 2 为底的对数

  • 定义域:[0, INFINITY]

  • 值域:[-INFINITY, INFINITY]

示例

log2(0.0)      # => -Infinity
log2(1.0)      # => 0.0
log2(2.0)      # => 1.0
log2(INFINITY) # => Infinity
static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);

    domain_check_min(d, 0.0, "log2");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);

    return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}
sin(x) → float 点击以切换源代码

返回 x正弦值,单位为弧度

  • 定义域:(-INFINITY, INFINITY)

  • 值域:[-1.0, 1.0]

示例

sin(-PI)   # => -1.2246063538223773e-16 # -0.0000000000000001
sin(-PI/2) # => -1.0
sin(0.0)   # => 0.0
sin(PI/2)  # => 1.0
sin(PI)    # => 1.2246063538223773e-16  # 0.0000000000000001
static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sin(Get_Double(x)));
}
sinh(x) → float 点击以切换源代码

返回 x双曲正弦值,单位为弧度

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[-INFINITY, INFINITY]

示例

sinh(-INFINITY) # => -Infinity
sinh(0.0)       # => 0.0
sinh(INFINITY)  # => Infinity
static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sinh(Get_Double(x)));
}
sqrt(x) → float 点击以切换源代码

返回 x 的主(非负)平方根

  • 定义域:[0, INFINITY]

  • 值域:[0, INFINITY]

示例

sqrt(0.0)      # => 0.0
sqrt(0.5)      # => 0.7071067811865476
sqrt(1.0)      # => 1.0
sqrt(2.0)      # => 1.4142135623730951
sqrt(4.0)      # => 2.0
sqrt(9.0)      # => 3.0
sqrt(INFINITY) # => Infinity
static VALUE
math_sqrt(VALUE unused_obj, VALUE x)
{
    return rb_math_sqrt(x);
}
tan(x) → float 点击以切换源代码

返回 x正切值,单位为弧度

  • 定义域:(-INFINITY, INFINITY)

  • 范围: (-INFINITY, INFINITY)

示例

tan(-PI)   # => 1.2246467991473532e-16  # -0.0000000000000001
tan(-PI/2) # => -1.633123935319537e+16  # -16331239353195370.0
tan(0.0)   # => 0.0
tan(PI/2)  # => 1.633123935319537e+16   # 16331239353195370.0
tan(PI)    # => -1.2246467991473532e-16 # -0.0000000000000001
static VALUE
math_tan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(tan(Get_Double(x)));
}
tanh(x) → float 点击以切换源代码

返回 x双曲正切值,单位为弧度

  • 定义域:[-INFINITY, INFINITY]

  • 值域:[-1, 1]

示例

tanh(-INFINITY) # => -1.0
tanh(0.0)       # => 0.0
tanh(INFINITY)  # => 1.0
static VALUE
math_tanh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(tanh(Get_Double(x)));
}