class IO::Buffer

IO::Buffer 是一个高效的用于输入/输出的零拷贝缓冲区。以下是典型的用例

  • 使用 ::new 创建一个空缓冲区,使用 copyset_valueset_string 填充缓冲区,使用 get_string 获取缓冲区,或使用 write 直接写入到某个文件。

  • 使用 ::for 创建一个映射到某个字符串的缓冲区,然后它可以用于使用 get_stringget_value 进行读取,以及写入(写入也会更改源字符串)。

  • 使用 ::map 创建一个映射到某个文件的缓冲区,然后它可以用于读取和写入底层文件。

  • 使用 ::string 创建一个固定大小的字符串,然后使用 read 读取到该字符串中,或者使用 set_value 修改该字符串。

与字符串和文件内存的交互是通过高效的底层 C 机制(如 `memcpy`)执行的。

该类旨在作为实现更高级机制的实用工具,例如 Fiber::Scheduler#io_readFiber::Scheduler#io_write,以及解析二进制协议。

用法示例

空缓冲区

buffer = IO::Buffer.new(8)  # create empty 8-byte buffer
# =>
# #<IO::Buffer 0x0000555f5d1a5c50+8 INTERNAL>
# ...
buffer
# =>
# <IO::Buffer 0x0000555f5d156ab0+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00
buffer.set_string('test', 2) # put there bytes of the "test" string, starting from offset 2
# => 4
buffer.get_string  # get the result
# => "\x00\x00test\x00\x00"

来自字符串的缓冲区

string = 'data'
IO::Buffer.for(string) do |buffer|
  buffer
  # =>
  # #<IO::Buffer 0x00007f3f02be9b18+4 SLICE>
  # 0x00000000  64 61 74 61                                     data

  buffer.get_string(2)  # read content starting from offset 2
  # => "ta"
  buffer.set_string('---', 1) # write content, starting from offset 1
  # => 3
  buffer
  # =>
  # #<IO::Buffer 0x00007f3f02be9b18+4 SLICE>
  # 0x00000000  64 2d 2d 2d                                     d---
  string  # original string changed, too
  # => "d---"
end

来自文件的缓冲区

File.write('test.txt', 'test data')
# => 9
buffer = IO::Buffer.map(File.open('test.txt'))
# =>
# #<IO::Buffer 0x00007f3f0768c000+9 MAPPED IMMUTABLE>
# ...
buffer.get_string(5, 2) # read 2 bytes, starting from offset 5
# => "da"
buffer.set_string('---', 1) # attempt to write
# in `set_string': Buffer is not writable! (IO::Buffer::AccessError)

# To create writable file-mapped buffer
# Open file for read-write, pass size, offset, and flags=0
buffer = IO::Buffer.map(File.open('test.txt', 'r+'), 9, 0, 0)
buffer.set_string('---', 1)
# => 3 -- bytes written
File.read('test.txt')
# => "t--- data"

此类是实验性的,接口可能会发生更改,对于文件映射尤其如此,将来可能会完全删除文件映射。

常量

BIG_ENDIAN

指大端字节顺序,其中最高有效字节首先存储。有关详细信息,请参见 get_value

DEFAULT_SIZE

默认缓冲区大小,通常是 PAGE_SIZE 的(较小)倍数。可以通过设置 RUBY_IO_BUFFER_DEFAULT_SIZE 环境变量显式指定。

EXTERNAL

表示缓冲区中的内存由其他人拥有。有关详细信息,请参见 external?

HOST_ENDIAN

指主机字节顺序。有关详细信息,请参见 get_value

INTERNAL

表示缓冲区中的内存由缓冲区拥有。有关详细信息,请参见 internal?

LITTLE_ENDIAN

指小端字节顺序,其中最低有效字节首先存储。有关详细信息,请参见 get_value

LOCKED

表示缓冲区中的内存已锁定,无法调整大小或释放。有关详细信息,请参见 locked?locked

MAPPED

表示缓冲区中的内存由操作系统映射。有关详细信息,请参见 mapped?

NETWORK_ENDIAN

指网络字节顺序,与大端字节顺序相同。有关详细信息,请参见 get_value

PAGE_SIZE

操作系统页面大小。用于高效的页面对齐内存分配。

PRIVATE

表示缓冲区中的内存是私有映射的,并且更改不会复制到底层文件。有关详细信息,请参见 private?

READONLY

表示缓冲区中的内存是只读的,尝试修改它将失败。有关详细信息,请参见 readonly?

SHARED

表示缓冲区中的内存也被映射,因此可以与其他进程共享。有关详细信息,请参见 shared?

公共类方法

IO::Buffer.for(string) → 只读 io_buffer 单击以切换源
IO::Buffer.for(string) {|io_buffer| ... read/write io_buffer ...}

从给定字符串的内存创建零拷贝 IO::Buffer。如果没有代码块,则会高效地创建字符串的冻结内部副本,并将其用作缓冲区源。当提供代码块时,缓冲区将直接与字符串的内部缓冲区关联,并且更新缓冲区将更新字符串。

在缓冲区上显式或通过垃圾回收调用 free 之前,源字符串将被锁定,无法修改。

如果字符串被冻结,它将创建一个只读缓冲区,无法修改。如果字符串是共享的,则在使用代码块形式时可能会触发写入时复制。

string = 'test'
buffer = IO::Buffer.for(string)
buffer.external? #=> true

buffer.get_string(0, 1)
# => "t"
string
# => "best"

buffer.resize(100)
# in `resize': Cannot resize external buffer! (IO::Buffer::AccessError)

IO::Buffer.for(string) do |buffer|
  buffer.set_string("T")
  string
  # => "Test"
end
VALUE
rb_io_buffer_type_for(VALUE klass, VALUE string)
{
    StringValue(string);

    // If the string is frozen, both code paths are okay.
    // If the string is not frozen, if a block is not given, it must be frozen.
    if (rb_block_given_p()) {
        struct io_buffer_for_yield_instance_arguments arguments = {
            .klass = klass,
            .string = string,
            .instance = Qnil,
            .flags = 0,
        };

        return rb_ensure(io_buffer_for_yield_instance, (VALUE)&arguments, io_buffer_for_yield_instance_ensure, (VALUE)&arguments);
    }
    else {
        // This internally returns the source string if it's already frozen.
        string = rb_str_tmp_frozen_acquire(string);
        return io_buffer_for_make_instance(klass, string, RB_IO_BUFFER_READONLY);
    }
}
IO::Buffer.map(file, [size, [offset, [flags]]]) → io_buffer 单击以切换源

通过内存映射文件来为从 file 读取创建 IO::Bufferfile_io 应该是以读取方式打开的 File 实例。

可以指定映射的可选 sizeoffset

默认情况下,缓冲区将是不可变的(只读);要创建可写映射,您需要以读写模式打开文件,并显式传递不带 IO::Buffer::IMMUTABLE 的 flags 参数。

File.write('test.txt', 'test')

buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::READONLY)
# => #<IO::Buffer 0x00000001014a0000+4 MAPPED READONLY>

buffer.readonly?   # => true

buffer.get_string
# => "test"

buffer.set_string('b', 0)
# `set_string': Buffer is not writable! (IO::Buffer::AccessError)

# create read/write mapping: length 4 bytes, offset 0, flags 0
buffer = IO::Buffer.map(File.open('test.txt', 'r+'), 4, 0)
buffer.set_string('b', 0)
# => 1

# Check it
File.read('test.txt')
# => "best"

请注意,某些操作系统可能在映射的缓冲区和文件读取之间没有缓存一致性。

static VALUE
io_buffer_map(int argc, VALUE *argv, VALUE klass)
{
    rb_check_arity(argc, 1, 4);

    // We might like to handle a string path?
    VALUE io = argv[0];

    size_t size;
    if (argc >= 2 && !RB_NIL_P(argv[1])) {
        size = io_buffer_extract_size(argv[1]);
    }
    else {
        rb_off_t file_size = rb_file_size(io);

        // Compiler can confirm that we handled file_size < 0 case:
        if (file_size < 0) {
            rb_raise(rb_eArgError, "Invalid negative file size!");
        }
        // Here, we assume that file_size is positive:
        else if ((uintmax_t)file_size > SIZE_MAX) {
            rb_raise(rb_eArgError, "File larger than address space!");
        }
        else {
            // This conversion should be safe:
            size = (size_t)file_size;
        }
    }

    // This is the file offset, not the buffer offset:
    rb_off_t offset = 0;
    if (argc >= 3) {
        offset = NUM2OFFT(argv[2]);
    }

    enum rb_io_buffer_flags flags = 0;
    if (argc >= 4) {
        flags = io_buffer_extract_flags(argv[3]);
    }

    return rb_io_buffer_map(io, size, offset, flags);
}
IO::Buffer.new([size = DEFAULT_SIZE, [flags = 0]]) → io_buffer 单击以切换源

创建一个新的零填充 IO::Buffer,大小为 size 字节。默认情况下,缓冲区将是 *internal*:直接分配的内存块。但是,如果请求的 size 大于操作系统特定的 IO::Buffer::PAGE_SIZE,则将使用虚拟内存机制(在 Unix 上使用匿名 mmap,在 Windows 上使用 VirtualAlloc)分配缓冲区。可以通过传递 IO::Buffer::MAPPED 作为第二个参数来强制执行此行为。

buffer = IO::Buffer.new(4)
# =>
# #<IO::Buffer 0x000055b34497ea10+4 INTERNAL>
# 0x00000000  00 00 00 00                                     ....

buffer.get_string(0, 1) # => "\x00"

buffer.set_string("test")
buffer
# =>
# #<IO::Buffer 0x000055b34497ea10+4 INTERNAL>
# 0x00000000  74 65 73 74                                     test
VALUE
rb_io_buffer_initialize(int argc, VALUE *argv, VALUE self)
{
    io_buffer_experimental();

    rb_check_arity(argc, 0, 2);

    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    size_t size;
    if (argc > 0) {
        size = io_buffer_extract_size(argv[0]);
    }
    else {
        size = RUBY_IO_BUFFER_DEFAULT_SIZE;
    }

    enum rb_io_buffer_flags flags = 0;
    if (argc >= 2) {
        flags = io_buffer_extract_flags(argv[1]);
    }
    else {
        flags |= io_flags_for_size(size);
    }

    io_buffer_initialize(self, buffer, NULL, size, flags, Qnil);

    return self;
}
size_of(buffer_type) → 字节大小 单击以切换源
size_of(buffer_type 数组) → 字节大小

返回给定缓冲区类型(或多个)的大小(以字节为单位)。

IO::Buffer.size_of(:u32) # => 4
IO::Buffer.size_of([:u32, :u32]) # => 8
static VALUE
io_buffer_size_of(VALUE klass, VALUE buffer_type)
{
    if (RB_TYPE_P(buffer_type, T_ARRAY)) {
        size_t total = 0;
        for (long i = 0; i < RARRAY_LEN(buffer_type); i++) {
            total += io_buffer_buffer_type_size(RB_SYM2ID(RARRAY_AREF(buffer_type, i)));
        }
        return SIZET2NUM(total);
    }
    else {
        return SIZET2NUM(io_buffer_buffer_type_size(RB_SYM2ID(buffer_type)));
    }
}
IO::Buffer.string(length) {|io_buffer| ... read/write io_buffer ...} → string 单击以切换源

创建一个给定长度的新字符串,并将零拷贝 IO::Buffer 实例传递给使用该字符串作为源的代码块。该代码块应写入缓冲区,并返回该字符串。

IO::Buffer.string(4) do |buffer|
  buffer.set_string("Ruby")
end
# => "Ruby"
VALUE
rb_io_buffer_type_string(VALUE klass, VALUE length)
{
    VALUE string = rb_str_new(NULL, RB_NUM2LONG(length));

    struct io_buffer_for_yield_instance_arguments arguments = {
        .klass = klass,
        .string = string,
        .instance = Qnil,
    };

    rb_ensure(io_buffer_for_yield_instance, (VALUE)&arguments, io_buffer_for_yield_instance_ensure, (VALUE)&arguments);

    return string;
}

公共实例方法

source & mask → io_buffer 单击以切换源

通过对源应用二进制 AND 操作(使用掩码,并在必要时重复),生成与源大小相同的新缓冲区。

IO::Buffer.for("1234567890") & IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x00005589b2758480+4 INTERNAL>
# 0x00000000  31 00 00 34 35 00 00 38 39 00                   1..45..89.
static VALUE
io_buffer_and(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);

    VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
    struct rb_io_buffer *output_buffer = NULL;
    TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);

    memory_and(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);

    return output;
}
<=>(other) → true 或 false 单击以切换源

使用 memcmp 比较缓冲区的大小和它们引用的内存的确切内容。

static VALUE
rb_io_buffer_compare(VALUE self, VALUE other)
{
    const void *ptr1, *ptr2;
    size_t size1, size2;

    rb_io_buffer_get_bytes_for_reading(self, &ptr1, &size1);
    rb_io_buffer_get_bytes_for_reading(other, &ptr2, &size2);

    if (size1 < size2) {
        return RB_INT2NUM(-1);
    }

    if (size1 > size2) {
        return RB_INT2NUM(1);
    }

    return RB_INT2NUM(memcmp(ptr1, ptr2, size1));
}
source ^ mask → io_buffer 单击以切换源

通过对源应用二进制 XOR 操作(使用掩码,并在必要时重复),生成与源大小相同的新缓冲区。

IO::Buffer.for("1234567890") ^ IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x000055a2d5d10480+10 INTERNAL>
# 0x00000000  ce 32 33 cb ca 36 37 c7 c6 30                   .23..67..0
static VALUE
io_buffer_xor(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);

    VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
    struct rb_io_buffer *output_buffer = NULL;
    TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);

    memory_xor(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);

    return output;
}
and!(mask) → io_buffer 单击以切换源

通过对源应用二进制 AND 操作(使用掩码,并在必要时重复),就地修改源缓冲区。

source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a0d0c20+10 INTERNAL>
# 0x00000000  31 32 33 34 35 36 37 38 39 30                   1234567890

source.and!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a0d0c20+10 INTERNAL>
# 0x00000000  31 00 00 34 35 00 00 38 39 00                   1..45..89.
static VALUE
io_buffer_and_inplace(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);
    io_buffer_check_overlaps(buffer, mask_buffer);

    void *base;
    size_t size;
    io_buffer_get_bytes_for_writing(buffer, &base, &size);

    memory_and_inplace(base, size, mask_buffer->base, mask_buffer->size);

    return self;
}
clear(value = 0, [offset, [length]]) → self 单击以切换源

offset 开始,用 value 填充缓冲区,持续 length 字节。

buffer = IO::Buffer.for('test').dup
# =>
#   <IO::Buffer 0x00007fca40087c38+4 INTERNAL>
#   0x00000000  74 65 73 74         test

buffer.clear
# =>
#   <IO::Buffer 0x00007fca40087c38+4 INTERNAL>
#   0x00000000  00 00 00 00         ....

buf.clear(1) # fill with 1
# =>
#   <IO::Buffer 0x00007fca40087c38+4 INTERNAL>
#   0x00000000  01 01 01 01         ....

buffer.clear(2, 1, 2) # fill with 2, starting from offset 1, for 2 bytes
# =>
#   <IO::Buffer 0x00007fca40087c38+4 INTERNAL>
#   0x00000000  01 02 02 01         ....

buffer.clear(2, 1) # fill with 2, starting from offset 1
# =>
#   <IO::Buffer 0x00007fca40087c38+4 INTERNAL>
#   0x00000000  01 02 02 02         ....
static VALUE
io_buffer_clear(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 3);

    uint8_t value = 0;
    if (argc >= 1) {
        value = NUM2UINT(argv[0]);
    }

    size_t offset, length;
    io_buffer_extract_offset_length(self, argc-1, argv+1, &offset, &length);

    rb_io_buffer_clear(self, value, offset, length);

    return self;
}
copy(source, [offset, [length, [source_offset]]]) → size 单击以切换源

使用 memmove 将源 IO::Buffer 中的内容高效地复制到缓冲区的 offset 处。对于复制 String 实例,请参见 set_string

buffer = IO::Buffer.new(32)
# =>
# #<IO::Buffer 0x0000555f5ca22520+32 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
# 0x00000010  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................  *

buffer.copy(IO::Buffer.for("test"), 8)
# => 4 -- size of buffer copied
buffer
# =>
# #<IO::Buffer 0x0000555f5cf8fe40+32 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00 74 65 73 74 00 00 00 00 ........test....
# 0x00000010  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ *

copy 可以用于将缓冲区放入与缓冲区关联的字符串中

string = "data:    "
# => "data:    "
buffer = IO::Buffer.for(string) do |buffer|
  buffer.copy(IO::Buffer.for("test"), 5)
end
# => 4
string
# => "data:test"

尝试复制到只读缓冲区将失败

File.write('test.txt', 'test')
buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::READONLY)
buffer.copy(IO::Buffer.for("test"), 8)
# in `copy': Buffer is not writable! (IO::Buffer::AccessError)

有关创建可变文件映射的详细信息,请参见 ::map,这将起作用

buffer = IO::Buffer.map(File.open('test.txt', 'r+'))
buffer.copy(IO::Buffer.for("boom"), 0)
# => 4
File.read('test.txt')
# => "boom"

尝试复制超出缓冲区边界的缓冲区将失败

buffer = IO::Buffer.new(2)
buffer.copy(IO::Buffer.for('test'), 0)
# in `copy': Specified offset+length is bigger than the buffer size! (ArgumentError)

在相互重叠的内存区域之间进行复制是安全的。在这种情况下,数据的复制方式就像数据首先从源缓冲区复制到临时缓冲区,然后再从临时缓冲区复制到目标缓冲区。

buffer = IO::Buffer.new(10)
buffer.set_string("0123456789")
buffer.copy(buffer, 3, 7)
# => 7
buffer
# =>
# #<IO::Buffer 0x000056494f8ce440+10 INTERNAL>
# 0x00000000  30 31 32 30 31 32 33 34 35 36                   0120123456
static VALUE
io_buffer_copy(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, 4);

    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE source = argv[0];
    const void *source_base;
    size_t source_size;

    rb_io_buffer_get_bytes_for_reading(source, &source_base, &source_size);

    return io_buffer_copy_from(buffer, source_base, source_size, argc-1, argv+1);
}
each(buffer_type, [offset, [count]]) {|offset, value| ...} → self 单击以切换源
each(buffer_type, [offset, [count]]) → 枚举器

offset 开始迭代缓冲区,产生每个 buffer_typevalue

如果给出 count,则仅产生 count 个值。

IO::Buffer.for("Hello World").each(:U8, 2, 2) do |offset, value|
  puts "#{offset}: #{value}"
end
# 2: 108
# 3: 108
static VALUE
io_buffer_each(int argc, VALUE *argv, VALUE self)
{
    RETURN_ENUMERATOR_KW(self, argc, argv, RB_NO_KEYWORDS);

    const void *base;
    size_t size;

    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    ID buffer_type;
    if (argc >= 1) {
        buffer_type = RB_SYM2ID(argv[0]);
    }
    else {
        buffer_type = RB_IO_BUFFER_DATA_TYPE_U8;
    }

    size_t offset, count;
    io_buffer_extract_offset_count(buffer_type, size, argc-1, argv+1, &offset, &count);

    for (size_t i = 0; i < count; i++) {
        size_t current_offset = offset;
        VALUE value = rb_io_buffer_get_value(base, size, buffer_type, &offset);
        rb_yield_values(2, SIZET2NUM(current_offset), value);
    }

    return self;
}
each_byte([offset, [count]]) {|offset, byte| ...} → self 单击以切换源
each_byte([offset, [count]]) → 枚举器

offset 开始迭代缓冲区,产生每个字节。

如果给出 count,则仅产生 count 个字节。

IO::Buffer.for("Hello World").each_byte(2, 2) do |offset, byte|
  puts "#{offset}: #{byte}"
end
# 2: 108
# 3: 108
static VALUE
io_buffer_each_byte(int argc, VALUE *argv, VALUE self)
{
    RETURN_ENUMERATOR_KW(self, argc, argv, RB_NO_KEYWORDS);

    const void *base;
    size_t size;

    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    size_t offset, count;
    io_buffer_extract_offset_count(RB_IO_BUFFER_DATA_TYPE_U8, size, argc-1, argv+1, &offset, &count);

    for (size_t i = 0; i < count; i++) {
        unsigned char *value = (unsigned char *)base + i + offset;
        rb_yield(RB_INT2FIX(*value));
    }

    return self;
}
empty? → true 或 false 单击以切换源

如果缓冲区的大小为 0:它由大小为 0 的 ::new 创建,或由来自空字符串的 ::for 创建。(请注意,无法映射空文件,因此使用 ::map 创建的缓冲区永远不会为空。)

static VALUE
rb_io_buffer_empty_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->size == 0);
}
external? → true 或 false 单击以切换源

如果缓冲区引用的内存不是由缓冲区本身分配或映射的,则该缓冲区是外部的。

使用 ::for 创建的缓冲区具有对字符串内存的外部引用。

外部缓冲区无法调整大小。

static VALUE
rb_io_buffer_external_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_EXTERNAL);
}
free → self 点击切换源代码

如果缓冲区引用内存,则将其释放回操作系统。

  • 对于映射的缓冲区(例如,来自文件):取消映射。

  • 对于从头创建的缓冲区:释放内存。

  • 对于从字符串创建的缓冲区:撤消关联。

在释放缓冲区后,不能再对其执行任何操作。

您可以调整已释放的缓冲区的大小以重新分配它。

buffer = IO::Buffer.for('test')
buffer.free
# => #<IO::Buffer 0x0000000000000000+0 NULL>

buffer.get_value(:U8, 0)
# in `get_value': The buffer is not allocated! (IO::Buffer::AllocationError)

buffer.get_string
# in `get_string': The buffer is not allocated! (IO::Buffer::AllocationError)

buffer.null?
# => true
VALUE
rb_io_buffer_free(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    if (buffer->flags & RB_IO_BUFFER_LOCKED) {
        rb_raise(rb_eIOBufferLockedError, "Buffer is locked!");
    }

    io_buffer_free(buffer);

    return self;
}
get_string([offset, [length, [encoding]]]) → string 点击切换源代码

将缓冲区的一部分或全部读取到字符串中,使用指定的 encoding。如果未提供编码,则使用 Encoding::BINARY

buffer = IO::Buffer.for('test')
buffer.get_string
# => "test"
buffer.get_string(2)
# => "st"
buffer.get_string(2, 1)
# => "s"
static VALUE
io_buffer_get_string(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 3);

    size_t offset, length;
    struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);

    const void *base;
    size_t size;
    io_buffer_get_bytes_for_reading(buffer, &base, &size);

    rb_encoding *encoding;
    if (argc >= 3) {
        encoding = rb_find_encoding(argv[2]);
    }
    else {
        encoding = rb_ascii8bit_encoding();
    }

    io_buffer_validate_range(buffer, offset, length);

    return rb_enc_str_new((const char*)base + offset, length, encoding);
}
get_value(buffer_type, offset) → numeric 点击切换源代码

从缓冲区中读取 offset 处的 type 类型的值。buffer_type 应该是以下符号之一

  • :U8: 无符号整数,1 字节

  • :S8: 有符号整数,1 字节

  • :u16: 无符号整数,2 字节,小端序

  • :U16: 无符号整数,2 字节,大端序

  • :s16: 有符号整数,2 字节,小端序

  • :S16: 有符号整数,2 字节,大端序

  • :u32: 无符号整数,4 字节,小端序

  • :U32: 无符号整数,4 字节,大端序

  • :s32: 有符号整数,4 字节,小端序

  • :S32: 有符号整数,4 字节,大端序

  • :u64: 无符号整数,8 字节,小端序

  • :U64: 无符号整数,8 字节,大端序

  • :s64: 有符号整数,8 字节,小端序

  • :S64: 有符号整数,8 字节,大端序

  • :f32: 单精度浮点数,4 字节,小端序

  • :F32: 单精度浮点数,4 字节,大端序

  • :f64: 双精度浮点数,8 字节,小端序

  • :F64: 双精度浮点数,8 字节,大端序

缓冲区类型特指存储在缓冲区中的二进制缓冲区的类型。例如,:u32 缓冲区类型是小端序格式的 32 位无符号整数。

string = [1.5].pack('f')
# => "\x00\x00\xC0?"
IO::Buffer.for(string).get_value(:f32, 0)
# => 1.5
static VALUE
io_buffer_get_value(VALUE self, VALUE type, VALUE _offset)
{
    const void *base;
    size_t size;
    size_t offset = io_buffer_extract_offset(_offset);

    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    return rb_io_buffer_get_value(base, size, RB_SYM2ID(type), &offset);
}
get_values(buffer_types, offset) → array 点击切换源代码

类似于 get_value,但它可以处理多种缓冲区类型并返回一个值数组。

string = [1.5, 2.5].pack('ff')
IO::Buffer.for(string).get_values([:f32, :f32], 0)
# => [1.5, 2.5]
static VALUE
io_buffer_get_values(VALUE self, VALUE buffer_types, VALUE _offset)
{
    size_t offset = io_buffer_extract_offset(_offset);

    const void *base;
    size_t size;
    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    if (!RB_TYPE_P(buffer_types, T_ARRAY)) {
        rb_raise(rb_eArgError, "Argument buffer_types should be an array!");
    }

    VALUE array = rb_ary_new_capa(RARRAY_LEN(buffer_types));

    for (long i = 0; i < RARRAY_LEN(buffer_types); i++) {
        VALUE type = rb_ary_entry(buffer_types, i);
        VALUE value = rb_io_buffer_get_value(base, size, RB_SYM2ID(type), &offset);
        rb_ary_push(array, value);
    }

    return array;
}
hexdump([offset, [length, [width]]]) → string 点击切换源代码

返回缓冲区的可读字符串表示形式。确切格式可能会更改。

buffer = IO::Buffer.for("Hello World")
puts buffer.hexdump
# 0x00000000  48 65 6c 6c 6f 20 57 6f 72 6c 64                Hello World

由于缓冲区通常相当大,您可能需要通过指定偏移量和长度来限制输出

puts buffer.hexdump(6, 5)
# 0x00000006  57 6f 72 6c 64                                  World
static VALUE
rb_io_buffer_hexdump(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 3);

    size_t offset, length;
    struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);

    size_t width = RB_IO_BUFFER_HEXDUMP_DEFAULT_WIDTH;
    if (argc >= 3) {
        width = io_buffer_extract_width(argv[2], 1);
    }

    // This may raise an exception if the offset/length is invalid:
    io_buffer_validate_range(buffer, offset, length);

    VALUE result = Qnil;

    if (io_buffer_validate(buffer) && buffer->base) {
        result = rb_str_buf_new(io_buffer_hexdump_output_size(width, length, 1));

        io_buffer_hexdump(result, width, buffer->base, offset+length, offset, 1);
    }

    return result;
}
dup → io_buffer 点击切换源代码
clone → io_buffer

创建源缓冲区的内部副本。对副本的更新不会影响源缓冲区。

source = IO::Buffer.for("Hello World")
# =>
# #<IO::Buffer 0x00007fd598466830+11 EXTERNAL READONLY SLICE>
# 0x00000000  48 65 6c 6c 6f 20 57 6f 72 6c 64                Hello World
buffer = source.dup
# =>
# #<IO::Buffer 0x0000558cbec03320+11 INTERNAL>
# 0x00000000  48 65 6c 6c 6f 20 57 6f 72 6c 64                Hello World
static VALUE
rb_io_buffer_initialize_copy(VALUE self, VALUE source)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    const void *source_base;
    size_t source_size;

    rb_io_buffer_get_bytes_for_reading(source, &source_base, &source_size);

    io_buffer_initialize(self, buffer, NULL, source_size, io_flags_for_size(source_size), Qnil);

    return io_buffer_copy_from(buffer, source_base, source_size, 0, NULL);
}
inspect → string 点击切换源代码

检查缓冲区并报告其内部状态的有用信息。只有缓冲区的一部分会以十六进制转储样式格式显示。

buffer = IO::Buffer.for("Hello World")
puts buffer.inspect
# #<IO::Buffer 0x000000010198ccd8+11 EXTERNAL READONLY SLICE>
# 0x00000000  48 65 6c 6c 6f 20 57 6f 72 6c 64                Hello World
VALUE
rb_io_buffer_inspect(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE result = rb_io_buffer_to_s(self);

    if (io_buffer_validate(buffer)) {
        // Limit the maximum size generated by inspect:
        size_t size = buffer->size;
        int clamped = 0;

        if (size > RB_IO_BUFFER_INSPECT_HEXDUMP_MAXIMUM_SIZE) {
            size = RB_IO_BUFFER_INSPECT_HEXDUMP_MAXIMUM_SIZE;
            clamped = 1;
        }

        io_buffer_hexdump(result, RB_IO_BUFFER_INSPECT_HEXDUMP_WIDTH, buffer->base, size, 0, 0);

        if (clamped) {
            rb_str_catf(result, "\n(and %" PRIuSIZE " more bytes not printed)", buffer->size - size);
        }
    }

    return result;
}
internal? → true or false 点击切换源代码

如果缓冲区是内部的,这意味着它引用的是由缓冲区本身分配的内存。

内部缓冲区不与任何外部内存(例如,字符串)或文件映射关联。

内部缓冲区是使用 ::new 创建的,并且当请求的大小小于 IO::Buffer::PAGE_SIZE 且在创建时未请求进行映射时,这是默认设置。

内部缓冲区可以调整大小,并且这种操作通常会使所有切片失效,但并非总是如此。

static VALUE
rb_io_buffer_internal_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_INTERNAL);
}
locked { ... } 点击切换源代码

允许以独占方式处理缓冲区,以实现并发安全性。当代码块执行时,该缓冲区被认为是锁定的,并且没有其他代码可以进入该锁。此外,锁定的缓冲区无法使用 resizefree 进行更改。

以下操作会获取锁:resizefree

锁定不是线程安全的。它被设计为围绕非阻塞系统调用的安全网。您只能在线程之间共享缓冲区,并使用适当的同步技术。

buffer = IO::Buffer.new(4)
buffer.locked? #=> false

Fiber.schedule do
  buffer.locked do
    buffer.write(io) # theoretical system call interface
  end
end

Fiber.schedule do
  # in `locked': Buffer already locked! (IO::Buffer::LockedError)
  buffer.locked do
    buffer.set_string("test", 0)
  end
end
VALUE
rb_io_buffer_locked(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    if (buffer->flags & RB_IO_BUFFER_LOCKED) {
        rb_raise(rb_eIOBufferLockedError, "Buffer already locked!");
    }

    buffer->flags |= RB_IO_BUFFER_LOCKED;

    VALUE result = rb_yield(self);

    buffer->flags &= ~RB_IO_BUFFER_LOCKED;

    return result;
}
locked? → true or false 点击切换源代码

如果缓冲区是锁定的,这意味着它在 locked 代码块执行期间。锁定的缓冲区无法调整大小或释放,并且不能在其上获取另一个锁。

锁定不是线程安全的,但它是一种语义,用于确保缓冲区在系统调用使用时不会移动。

buffer.locked do
  buffer.write(io) # theoretical system call interface
end
static VALUE
rb_io_buffer_locked_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_LOCKED);
}
mapped? → true or false 点击切换源代码

如果缓冲区是映射的,这意味着它引用的是由缓冲区映射的内存。

映射缓冲区要么是匿名的,如果是由 ::new 使用 IO::Buffer::MAPPED 标志创建的,或者如果大小至少为 IO::Buffer::PAGE_SIZE,或者是使用 ::map 创建的,则由文件支持。

映射缓冲区通常可以调整大小,并且这种操作通常会使所有切片无效,但并非总是如此。

static VALUE
rb_io_buffer_mapped_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_MAPPED);
}
not! → io_buffer 点击切换源代码

通过将二进制 NOT 操作应用于源,就地修改源缓冲区。

source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a33a450+10 INTERNAL>
# 0x00000000  31 32 33 34 35 36 37 38 39 30                   1234567890

source.not!
# =>
# #<IO::Buffer 0x000056307a33a450+10 INTERNAL>
# 0x00000000  ce cd cc cb ca c9 c8 c7 c6 cf                   ..........
static VALUE
io_buffer_not_inplace(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    void *base;
    size_t size;
    io_buffer_get_bytes_for_writing(buffer, &base, &size);

    memory_not_inplace(base, size);

    return self;
}
null? → true or false 点击切换源代码

如果缓冲区已使用 free 释放,使用 transfer 传输,或者根本没有分配。

buffer = IO::Buffer.new(0)
buffer.null? #=> true

buffer = IO::Buffer.new(4)
buffer.null? #=> false
buffer.free
buffer.null? #=> true
static VALUE
rb_io_buffer_null_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->base == NULL);
}
or!(mask) → io_buffer 点击切换源代码

通过使用掩码将二进制 OR 操作应用于源,就地修改源缓冲区,并根据需要重复操作。

source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a272350+10 INTERNAL>
# 0x00000000  31 32 33 34 35 36 37 38 39 30                   1234567890

source.or!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a272350+10 INTERNAL>
# 0x00000000  ff 32 33 ff ff 36 37 ff ff 30                   .23..67..0
static VALUE
io_buffer_or_inplace(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);
    io_buffer_check_overlaps(buffer, mask_buffer);

    void *base;
    size_t size;
    io_buffer_get_bytes_for_writing(buffer, &base, &size);

    memory_or_inplace(base, size, mask_buffer->base, mask_buffer->size);

    return self;
}
pread(io, from, [length, [offset]]) → read length or -errno 点击切换源代码

从指定的 from 位置开始,从 io 读取至少 length 个字节,放入从 offset 开始的缓冲区。如果发生错误,则返回 -errno

如果未给定 lengthnil,则其默认为缓冲区的大小减去偏移量,即整个缓冲区。

如果 length 为零,则将只执行一次 pread 操作。

如果未给出 offset,则其默认为零,即缓冲区的开头。

IO::Buffer.for('test') do |buffer|
  p buffer
  # =>
  # <IO::Buffer 0x00007fca40087c38+4 SLICE>
  # 0x00000000  74 65 73 74         test

  # take 2 bytes from the beginning of urandom,
  # put them in buffer starting from position 2
  buffer.pread(File.open('/dev/urandom', 'rb'), 0, 2, 2)
  p buffer
  # =>
  # <IO::Buffer 0x00007f3bc65f2a58+4 EXTERNAL SLICE>
  # 0x00000000  05 35 73 74         te.5
end
static VALUE
io_buffer_pread(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 2, 4);

    VALUE io = argv[0];
    rb_off_t from = NUM2OFFT(argv[1]);

    size_t length, offset;
    io_buffer_extract_length_offset(self, argc-2, argv+2, &length, &offset);

    return rb_io_buffer_pread(self, io, from, length, offset);
}
private? → true or false 点击切换源代码

如果缓冲区是私有的,这意味着对缓冲区的修改不会复制到基础文件映射。

# Create a test file:
File.write('test.txt', 'test')

# Create a private mapping from the given file. Note that the file here
# is opened in read-only mode, but it doesn't matter due to the private
# mapping:
buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::PRIVATE)
# => #<IO::Buffer 0x00007fce63f11000+4 MAPPED PRIVATE>

# Write to the buffer (invoking CoW of the underlying file buffer):
buffer.set_string('b', 0)
# => 1

# The file itself is not modified:
File.read('test.txt')
# => "test"
static VALUE
rb_io_buffer_private_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_PRIVATE);
}
pwrite(io, from, [length, [offset]]) → written length or -errno 点击切换源代码

offset 开始,将缓冲区中的至少 length 个字节写入到从指定的 from 位置开始的 io 中。如果发生错误,则返回 -errno

如果未给定 lengthnil,则其默认为缓冲区的大小减去偏移量,即整个缓冲区。

如果 length 为零,则将只执行一次 pwrite 操作。

如果未给出 offset,则其默认为零,即缓冲区的开头。

如果 from 位置超出文件末尾,则该间隙将填充空(0 值)字节。

out = File.open('output.txt', File::RDWR) # open for read/write, no truncation
IO::Buffer.for('1234567').pwrite(out, 2, 3, 1)

这导致 234 (3 字节,从位置 1 开始) 被写入到 output.txt 中,从文件位置 2 开始。

static VALUE
io_buffer_pwrite(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 2, 4);

    VALUE io = argv[0];
    rb_off_t from = NUM2OFFT(argv[1]);

    size_t length, offset;
    io_buffer_extract_length_offset(self, argc-2, argv+2, &length, &offset);

    return rb_io_buffer_pwrite(self, io, from, length, offset);
}
read(io, [length, [offset]]) → read length or -errno 点击切换源代码

io 读取至少 length 个字节,放入从 offset 开始的缓冲区。如果发生错误,则返回 -errno

如果未给定 lengthnil,则其默认为缓冲区的大小减去偏移量,即整个缓冲区。

如果 length 为零,则将只执行一次 read 操作。

如果未给出 offset,则其默认为零,即缓冲区的开头。

IO::Buffer.for('test') do |buffer|
  p buffer
  # =>
  # <IO::Buffer 0x00007fca40087c38+4 SLICE>
  # 0x00000000  74 65 73 74         test
  buffer.read(File.open('/dev/urandom', 'rb'), 2)
  p buffer
  # =>
  # <IO::Buffer 0x00007f3bc65f2a58+4 EXTERNAL SLICE>
  # 0x00000000  05 35 73 74         .5st
end
static VALUE
io_buffer_read(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, 3);

    VALUE io = argv[0];

    size_t length, offset;
    io_buffer_extract_length_offset(self, argc-1, argv+1, &length, &offset);

    return rb_io_buffer_read(self, io, length, offset);
}
readonly? → true or false 点击切换源代码

如果缓冲区是只读的,这意味着无法使用 set_valueset_stringcopy 等类似方法修改缓冲区。

冻结的字符串和只读文件会创建只读缓冲区。

static VALUE
io_buffer_readonly_p(VALUE self)
{
    return RBOOL(rb_io_buffer_readonly_p(self));
}
resize(new_size) → self 点击切换源代码

将缓冲区调整为 new_size 个字节,同时保留其内容。根据旧大小和新大小,与缓冲区关联的内存区域可能会扩展,或者在不同的地址重新分配,同时复制内容。

buffer = IO::Buffer.new(4)
buffer.set_string("test", 0)
buffer.resize(8) # resize to 8 bytes
# =>
# #<IO::Buffer 0x0000555f5d1a1630+8 INTERNAL>
# 0x00000000  74 65 73 74 00 00 00 00                         test....

外部缓冲区(使用 ::for 创建)和锁定的缓冲区无法调整大小。

static VALUE
io_buffer_resize(VALUE self, VALUE size)
{
    rb_io_buffer_resize(self, io_buffer_extract_size(size));

    return self;
}
set_string(string, [offset, [length, [source_offset]]]) → size 点击切换源代码

使用 memmove,从源 String 高效地复制到缓冲区中的 offset 位置。

buf = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00                         ........

# set buffer starting from offset 1, take 2 bytes starting from string's
# second
buf.set_string('test', 1, 2, 1)
# => 2
buf
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000  00 65 73 00 00 00 00 00                         .es.....

另请参阅 copy,以了解如何使用缓冲区写入来更改关联的字符串和文件。

static VALUE
io_buffer_set_string(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, 4);

    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE string = rb_str_to_str(argv[0]);

    const void *source_base = RSTRING_PTR(string);
    size_t source_size = RSTRING_LEN(string);

    return io_buffer_copy_from(buffer, source_base, source_size, argc-1, argv+1);
}
set_value(type, offset, value) → offset 点击切换源代码

type 类型的 value 写入缓冲区的 offset 位置。type 应该是 get_value 中描述的符号之一。

buffer = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00

buffer.set_value(:U8, 1, 111)
# => 1

buffer
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 6f 00 00 00 00 00 00                         .o......

请注意,如果 type 是整数,而 valueFloat,则会执行隐式截断。

buffer = IO::Buffer.new(8)
buffer.set_value(:U32, 0, 2.5)

buffer
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 00 00 02 00 00 00 00
#                      ^^ the same as if we'd pass just integer 2
static VALUE
io_buffer_set_value(VALUE self, VALUE type, VALUE _offset, VALUE value)
{
    void *base;
    size_t size;
    size_t offset = io_buffer_extract_offset(_offset);

    rb_io_buffer_get_bytes_for_writing(self, &base, &size);

    rb_io_buffer_set_value(base, size, RB_SYM2ID(type), &offset, value);

    return SIZET2NUM(offset);
}
set_values(buffer_types, offset, values) → offset 点击切换源代码

buffer_types 类型的 values 写入缓冲区的 offset 位置。buffer_types 应该是 get_value 中描述的符号数组。values 应该是要写入的值数组。

buffer = IO::Buffer.new(8)
buffer.set_values([:U8, :U16], 0, [1, 2])
buffer
# =>
# #<IO::Buffer 0x696f717561746978+8 INTERNAL>
# 0x00000000  01 00 02 00 00 00 00 00                         ........
static VALUE
io_buffer_set_values(VALUE self, VALUE buffer_types, VALUE _offset, VALUE values)
{
    if (!RB_TYPE_P(buffer_types, T_ARRAY)) {
        rb_raise(rb_eArgError, "Argument buffer_types should be an array!");
    }

    if (!RB_TYPE_P(values, T_ARRAY)) {
        rb_raise(rb_eArgError, "Argument values should be an array!");
    }

    if (RARRAY_LEN(buffer_types) != RARRAY_LEN(values)) {
        rb_raise(rb_eArgError, "Argument buffer_types and values should have the same length!");
    }

    size_t offset = io_buffer_extract_offset(_offset);

    void *base;
    size_t size;
    rb_io_buffer_get_bytes_for_writing(self, &base, &size);

    for (long i = 0; i < RARRAY_LEN(buffer_types); i++) {
        VALUE type = rb_ary_entry(buffer_types, i);
        VALUE value = rb_ary_entry(values, i);
        rb_io_buffer_set_value(base, size, RB_SYM2ID(type), &offset, value);
    }

    return SIZET2NUM(offset);
}
shared? → true or false 点击切换源代码

如果缓冲区是共享的,这意味着它引用的是可以与其他进程共享的内存(因此可能在本地未修改的情况下发生更改)。

# Create a test file:
File.write('test.txt', 'test')

# Create a shared mapping from the given file, the file must be opened in
# read-write mode unless we also specify IO::Buffer::READONLY:
buffer = IO::Buffer.map(File.open('test.txt', 'r+'), nil, 0)
# => #<IO::Buffer 0x00007f1bffd5e000+4 EXTERNAL MAPPED SHARED>

# Write to the buffer, which will modify the mapped file:
buffer.set_string('b', 0)
# => 1

# The file itself is modified:
File.read('test.txt')
# => "best"
static VALUE
rb_io_buffer_shared_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_SHARED);
}
size → integer 点击切换源代码

返回明确设置的缓冲区大小(在使用 ::new 创建时或在 resize 时),或者是在从字符串或文件创建缓冲区时推断出来的。

VALUE
rb_io_buffer_size(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return SIZET2NUM(buffer->size);
}
slice([offset, [length]]) → io_buffer 点击切换源代码

生成另一个 IO::Buffer,它是当前缓冲区的切片(或视图),从 offset 字节开始,延伸 length 个字节。

切片操作在不复制内存的情况下发生,并且切片会继续与原始缓冲区的源(字符串或文件)关联(如果有)。

如果未给出偏移量,则其将为零。如果偏移量为负数,则会引发 ArgumentError

如果未给出长度,则切片将与原始缓冲区减去指定的偏移量一样长。如果长度为负数,则会引发 ArgumentError

如果 offset+length 超出当前缓冲区的边界,则引发 RuntimeError

string = 'test'
buffer = IO::Buffer.for(string).dup

slice = buffer.slice
# =>
# #<IO::Buffer 0x0000000108338e68+4 SLICE>
# 0x00000000  74 65 73 74                                     test

buffer.slice(2)
# =>
# #<IO::Buffer 0x0000000108338e6a+2 SLICE>
# 0x00000000  73 74                                           st

slice = buffer.slice(1, 2)
# =>
# #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE>
# 0x00000000  65 73                                           es

# Put "o" into 0s position of the slice
slice.set_string('o', 0)
slice
# =>
# #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE>
# 0x00000000  6f 73                                           os

# it is also visible at position 1 of the original buffer
buffer
# =>
# #<IO::Buffer 0x00007fc3d31e2d80+4 INTERNAL>
# 0x00000000  74 6f 73 74                                     tost
static VALUE
io_buffer_slice(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 2);

    size_t offset, length;
    struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);

    return rb_io_buffer_slice(buffer, self, offset, length);
}
to_s → string 点击切换源代码

缓冲区的简短表示。它包括地址、大小和符号标志。此格式可能会更改。

puts IO::Buffer.new(4) # uses to_s internally
# #<IO::Buffer 0x000055769f41b1a0+4 INTERNAL>
VALUE
rb_io_buffer_to_s(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE result = rb_str_new_cstr("#<");

    rb_str_append(result, rb_class_name(CLASS_OF(self)));
    rb_str_catf(result, " %p+%"PRIdSIZE, buffer->base, buffer->size);

    if (buffer->base == NULL) {
        rb_str_cat2(result, " NULL");
    }

    if (buffer->flags & RB_IO_BUFFER_EXTERNAL) {
        rb_str_cat2(result, " EXTERNAL");
    }

    if (buffer->flags & RB_IO_BUFFER_INTERNAL) {
        rb_str_cat2(result, " INTERNAL");
    }

    if (buffer->flags & RB_IO_BUFFER_MAPPED) {
        rb_str_cat2(result, " MAPPED");
    }

    if (buffer->flags & RB_IO_BUFFER_FILE) {
        rb_str_cat2(result, " FILE");
    }

    if (buffer->flags & RB_IO_BUFFER_SHARED) {
        rb_str_cat2(result, " SHARED");
    }

    if (buffer->flags & RB_IO_BUFFER_LOCKED) {
        rb_str_cat2(result, " LOCKED");
    }

    if (buffer->flags & RB_IO_BUFFER_PRIVATE) {
        rb_str_cat2(result, " PRIVATE");
    }

    if (buffer->flags & RB_IO_BUFFER_READONLY) {
        rb_str_cat2(result, " READONLY");
    }

    if (buffer->source != Qnil) {
        rb_str_cat2(result, " SLICE");
    }

    if (!io_buffer_validate(buffer)) {
        rb_str_cat2(result, " INVALID");
    }

    return rb_str_cat2(result, ">");
}
transfer → new_io_buffer 点击切换源代码

将底层内存的所有权转移到新的缓冲区,导致当前缓冲区变为未初始化状态。

buffer = IO::Buffer.new('test')
other = buffer.transfer
other
# =>
# #<IO::Buffer 0x00007f136a15f7b0+4 SLICE>
# 0x00000000  74 65 73 74                                     test
buffer
# =>
# #<IO::Buffer 0x0000000000000000+0 NULL>
buffer.null?
# => true
VALUE
rb_io_buffer_transfer(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    if (buffer->flags & RB_IO_BUFFER_LOCKED) {
        rb_raise(rb_eIOBufferLockedError, "Cannot transfer ownership of locked buffer!");
    }

    VALUE instance = rb_io_buffer_type_allocate(rb_class_of(self));
    struct rb_io_buffer *transferred;
    TypedData_Get_Struct(instance, struct rb_io_buffer, &rb_io_buffer_type, transferred);

    *transferred = *buffer;
    io_buffer_zero(buffer);

    return instance;
}
valid? → true 或 false 点击切换源代码

返回缓冲区是否可访问。

如果缓冲区是另一个缓冲区(或字符串)的切片,而该缓冲区(或字符串)已被释放或重新分配到不同的地址,则该缓冲区将变为无效。

static VALUE
rb_io_buffer_valid_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(io_buffer_validate(buffer));
}
values(buffer_type, [offset, [count]]) → array 点击切换源代码

返回从 offset 开始的 buffer_type 类型的值的数组。

如果给定 count,则只返回 count 个值。

IO::Buffer.for("Hello World").values(:U8, 2, 2)
# => [108, 108]
static VALUE
io_buffer_values(int argc, VALUE *argv, VALUE self)
{
    const void *base;
    size_t size;

    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    ID buffer_type;
    if (argc >= 1) {
        buffer_type = RB_SYM2ID(argv[0]);
    }
    else {
        buffer_type = RB_IO_BUFFER_DATA_TYPE_U8;
    }

    size_t offset, count;
    io_buffer_extract_offset_count(buffer_type, size, argc-1, argv+1, &offset, &count);

    VALUE array = rb_ary_new_capa(count);

    for (size_t i = 0; i < count; i++) {
        VALUE value = rb_io_buffer_get_value(base, size, buffer_type, &offset);
        rb_ary_push(array, value);
    }

    return array;
}
write(io, [length, [offset]]) → written length 或 -errno 点击切换源代码

从缓冲区的 offset 开始,将至少 length 个字节写入 io。如果发生错误,则返回 -errno

如果未给定 lengthnil,则其默认为缓冲区的大小减去偏移量,即整个缓冲区。

如果 length 为零,则将只发生一次 write 操作。

如果未给出 offset,则其默认为零,即缓冲区的开头。

out = File.open('output.txt', 'wb')
IO::Buffer.for('1234567').write(out, 3)

这将导致 123 被写入 output.txt

static VALUE
io_buffer_write(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, 3);

    VALUE io = argv[0];

    size_t length, offset;
    io_buffer_extract_length_offset(self, argc-1, argv+1, &length, &offset);

    return rb_io_buffer_write(self, io, length, offset);
}
xor!(mask) → io_buffer 点击切换源代码

通过使用掩码对源进行二进制 XOR 操作,根据需要重复,就地修改源缓冲区。

source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a25b3e0+10 INTERNAL>
# 0x00000000  31 32 33 34 35 36 37 38 39 30                   1234567890

source.xor!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a25b3e0+10 INTERNAL>
# 0x00000000  ce 32 33 cb ca 36 37 c7 c6 30                   .23..67..0
static VALUE
io_buffer_xor_inplace(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);
    io_buffer_check_overlaps(buffer, mask_buffer);

    void *base;
    size_t size;
    io_buffer_get_bytes_for_writing(buffer, &base, &size);

    memory_xor_inplace(base, size, mask_buffer->base, mask_buffer->size);

    return self;
}
source | mask → io_buffer 点击切换源代码

通过使用掩码对源进行二进制 OR 操作,根据需要重复,生成与源大小相同的新缓冲区。

IO::Buffer.for("1234567890") | IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x0000561785ae3480+10 INTERNAL>
# 0x00000000  ff 32 33 ff ff 36 37 ff ff 30                   .23..67..0
static VALUE
io_buffer_or(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);

    VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
    struct rb_io_buffer *output_buffer = NULL;
    TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);

    memory_or(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);

    return output;
}
~source → io_buffer 点击切换源代码

通过对源进行二进制 NOT 操作,生成与源大小相同的新缓冲区。

~IO::Buffer.for("1234567890")
# =>
# #<IO::Buffer 0x000055a5ac42f120+10 INTERNAL>
# 0x00000000  ce cd cc cb ca c9 c8 c7 c6 cf                   ..........
static VALUE
io_buffer_not(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
    struct rb_io_buffer *output_buffer = NULL;
    TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);

    memory_not(output_buffer->base, buffer->base, buffer->size);

    return output;
}