类 UNIXSocket
UNIXSocket
代表一个 UNIX 域流客户端套接字。
公共类方法
new(path) → unixsocket 点击切换源代码
创建一个连接到 path 的新 UNIX 客户端套接字。
require 'socket' s = UNIXSocket.new("/tmp/sock") s.send "hello", 0
static VALUE unix_init(VALUE sock, VALUE path) { return rsock_init_unixsock(sock, path, 0); }
pair([type [, protocol]]) → [unixsocket1, unixsocket2] 点击切换源代码
socketpair([type [, protocol]]) → [unixsocket1, unixsocket2]
创建一个彼此连接的套接字对。
type 应该是一个套接字类型,例如::STREAM, :DGRAM, :RAW 等。
protocol 应该是域中定义的协议。0 是域的默认协议。
s1, s2 = UNIXSocket.pair s1.send "a", 0 s1.send "b", 0 p s2.recv(10) #=> "ab"
static VALUE unix_s_socketpair(int argc, VALUE *argv, VALUE klass) { VALUE domain, type, protocol; VALUE args[3]; domain = INT2FIX(PF_UNIX); rb_scan_args(argc, argv, "02", &type, &protocol); if (argc == 0) type = INT2FIX(SOCK_STREAM); if (argc <= 1) protocol = INT2FIX(0); args[0] = domain; args[1] = type; args[2] = protocol; return rsock_sock_s_socketpair(3, args, klass); }
pair([type [, protocol]]) → [unixsocket1, unixsocket2] 点击切换源代码
socketpair([type [, protocol]]) → [unixsocket1, unixsocket2]
创建一个彼此连接的套接字对。
type 应该是一个套接字类型,例如::STREAM, :DGRAM, :RAW 等。
protocol 应该是域中定义的协议。0 是域的默认协议。
s1, s2 = UNIXSocket.pair s1.send "a", 0 s1.send "b", 0 p s2.recv(10) #=> "ab"
static VALUE unix_s_socketpair(int argc, VALUE *argv, VALUE klass) { VALUE domain, type, protocol; VALUE args[3]; domain = INT2FIX(PF_UNIX); rb_scan_args(argc, argv, "02", &type, &protocol); if (argc == 0) type = INT2FIX(SOCK_STREAM); if (argc <= 1) protocol = INT2FIX(0); args[0] = domain; args[1] = type; args[2] = protocol; return rsock_sock_s_socketpair(3, args, klass); }
公共实例方法
addr → [address_family, unix_path] 点击切换源代码
返回本地地址,它是一个包含 address_family 和 unix_path 的数组。
示例
serv = UNIXServer.new("/tmp/sock") p serv.addr #=> ["AF_UNIX", "/tmp/sock"]
static VALUE unix_addr(VALUE sock) { rb_io_t *fptr; struct sockaddr_un addr; socklen_t len = (socklen_t)sizeof addr; socklen_t len0 = len; GetOpenFile(sock, fptr); if (getsockname(fptr->fd, (struct sockaddr*)&addr, &len) < 0) rsock_sys_fail_path("getsockname(2)", fptr->pathv); if (len0 < len) len = len0; return rsock_unixaddr(&addr, len); }
path → path 点击切换源代码
返回 unixsocket 本地地址的路径。
s = UNIXServer.new("/tmp/sock") p s.path #=> "/tmp/sock"
static VALUE unix_path(VALUE sock) { rb_io_t *fptr; GetOpenFile(sock, fptr); if (NIL_P(fptr->pathv)) { struct sockaddr_un addr; socklen_t len = (socklen_t)sizeof(addr); socklen_t len0 = len; if (getsockname(fptr->fd, (struct sockaddr*)&addr, &len) < 0) rsock_sys_fail_path("getsockname(2)", fptr->pathv); if (len0 < len) len = len0; fptr->pathv = rb_obj_freeze(rsock_unixpath_str(&addr, len)); } return rb_str_dup(fptr->pathv); }
peeraddr → [address_family, unix_path] 点击切换源代码
返回远程地址,它是一个包含 address_family 和 unix_path 的数组。
示例
serv = UNIXServer.new("/tmp/sock") c = UNIXSocket.new("/tmp/sock") p c.peeraddr #=> ["AF_UNIX", "/tmp/sock"]
static VALUE unix_peeraddr(VALUE sock) { rb_io_t *fptr; struct sockaddr_un addr; socklen_t len = (socklen_t)sizeof addr; socklen_t len0 = len; GetOpenFile(sock, fptr); if (getpeername(fptr->fd, (struct sockaddr*)&addr, &len) < 0) rsock_sys_fail_path("getpeername(2)", fptr->pathv); if (len0 < len) len = len0; return rsock_unixaddr(&addr, len); }
recv_io([klass [, mode]]) → io 点击切换源代码
示例
UNIXServer.open("/tmp/sock") {|serv| UNIXSocket.open("/tmp/sock") {|c| s = serv.accept c.send_io STDOUT stdout = s.recv_io p STDOUT.fileno #=> 1 p stdout.fileno #=> 7 stdout.puts "hello" # outputs "hello\n" to standard output. } }
klass 将决定返回的 io 的类(使用 IO.for_fd 单例方法或类似方法)。如果 klass 是 nil
,则返回一个整数文件描述符。
mode 与传递给 IO.for_fd 的参数相同。
static VALUE unix_recv_io(int argc, VALUE *argv, VALUE sock) { VALUE klass, mode; rb_io_t *fptr; struct iomsg_arg arg; struct iovec vec[2]; char buf[1]; unsigned int gc_reason = 0; enum { GC_REASON_EMSGSIZE = 0x1, GC_REASON_TRUNCATE = 0x2, GC_REASON_ENOMEM = 0x4 }; int fd; #if FD_PASSING_BY_MSG_CONTROL union { struct cmsghdr hdr; char pad[sizeof(struct cmsghdr)+8+sizeof(int)+8]; } cmsg; #endif rb_scan_args(argc, argv, "02", &klass, &mode); if (argc == 0) klass = rb_cIO; if (argc <= 1) mode = Qnil; retry: GetOpenFile(sock, fptr); arg.msg.msg_name = NULL; arg.msg.msg_namelen = 0; vec[0].iov_base = buf; vec[0].iov_len = sizeof(buf); arg.msg.msg_iov = vec; arg.msg.msg_iovlen = 1; #if FD_PASSING_BY_MSG_CONTROL arg.msg.msg_control = (caddr_t)&cmsg; arg.msg.msg_controllen = (socklen_t)CMSG_SPACE(sizeof(int)); arg.msg.msg_flags = 0; cmsg.hdr.cmsg_len = (socklen_t)CMSG_LEN(sizeof(int)); cmsg.hdr.cmsg_level = SOL_SOCKET; cmsg.hdr.cmsg_type = SCM_RIGHTS; fd = -1; memcpy(CMSG_DATA(&cmsg.hdr), &fd, sizeof(int)); #else arg.msg.msg_accrights = (caddr_t)&fd; arg.msg.msg_accrightslen = sizeof(fd); fd = -1; #endif arg.fd = fptr->fd; while ((int)BLOCKING_REGION_FD(recvmsg_blocking, &arg) == -1) { int e = errno; if (e == EMSGSIZE && !(gc_reason & GC_REASON_EMSGSIZE)) { /* FreeBSD gets here when we're out of FDs */ gc_reason |= GC_REASON_EMSGSIZE; rb_gc_for_fd(EMFILE); goto retry; } else if (e == ENOMEM && !(gc_reason & GC_REASON_ENOMEM)) { /* ENOMEM is documented in recvmsg manpages */ gc_reason |= GC_REASON_ENOMEM; rb_gc_for_fd(e); goto retry; } if (!rb_io_wait_readable(arg.fd)) rsock_syserr_fail_path(e, "recvmsg(2)", fptr->pathv); } #if FD_PASSING_BY_MSG_CONTROL if (arg.msg.msg_controllen < (socklen_t)sizeof(struct cmsghdr)) { /* FreeBSD and Linux both get here when we're out of FDs */ if (!(gc_reason & GC_REASON_TRUNCATE)) { gc_reason |= GC_REASON_TRUNCATE; rb_gc_for_fd(EMFILE); goto retry; } rb_raise(rb_eSocket, "file descriptor was not passed (msg_controllen=%d smaller than sizeof(struct cmsghdr)=%d)", (int)arg.msg.msg_controllen, (int)sizeof(struct cmsghdr)); } if (cmsg.hdr.cmsg_level != SOL_SOCKET) { rb_raise(rb_eSocket, "file descriptor was not passed (cmsg_level=%d, %d expected)", cmsg.hdr.cmsg_level, SOL_SOCKET); } if (cmsg.hdr.cmsg_type != SCM_RIGHTS) { rb_raise(rb_eSocket, "file descriptor was not passed (cmsg_type=%d, %d expected)", cmsg.hdr.cmsg_type, SCM_RIGHTS); } if (arg.msg.msg_controllen < (socklen_t)CMSG_LEN(sizeof(int))) { rb_raise(rb_eSocket, "file descriptor was not passed (msg_controllen=%d smaller than CMSG_LEN(sizeof(int))=%d)", (int)arg.msg.msg_controllen, (int)CMSG_LEN(sizeof(int))); } if ((socklen_t)CMSG_SPACE(sizeof(int)) < arg.msg.msg_controllen) { rb_raise(rb_eSocket, "file descriptor was not passed (msg_controllen=%d bigger than CMSG_SPACE(sizeof(int))=%d)", (int)arg.msg.msg_controllen, (int)CMSG_SPACE(sizeof(int))); } if (cmsg.hdr.cmsg_len != CMSG_LEN(sizeof(int))) { rsock_discard_cmsg_resource(&arg.msg, 0); rb_raise(rb_eSocket, "file descriptor was not passed (cmsg_len=%d, %d expected)", (int)cmsg.hdr.cmsg_len, (int)CMSG_LEN(sizeof(int))); } #else if (arg.msg.msg_accrightslen != sizeof(fd)) { rb_raise(rb_eSocket, "file descriptor was not passed (accrightslen=%d, %d expected)", arg.msg.msg_accrightslen, (int)sizeof(fd)); } #endif #if FD_PASSING_BY_MSG_CONTROL memcpy(&fd, CMSG_DATA(&cmsg.hdr), sizeof(int)); #endif rb_update_max_fd(fd); rb_maygvl_fd_fix_cloexec(fd); if (klass == Qnil) return INT2FIX(fd); else { ID for_fd; int ff_argc; VALUE ff_argv[2]; CONST_ID(for_fd, "for_fd"); ff_argc = mode == Qnil ? 1 : 2; ff_argv[0] = INT2FIX(fd); ff_argv[1] = mode; return rb_funcallv(klass, for_fd, ff_argc, ff_argv); } }
recvfrom(maxlen [, flags[, outbuf]]) → [mesg, unixaddress] 点击切换源代码
通过unixsocket接收消息。
maxlen 是接收的最大字节数。
flags 应该是 Socket::MSG_* 常量的按位或运算结果。
即使outbuf 在方法调用之前不为空,它也只包含接收到的数据。
s1 = Socket.new(:UNIX, :DGRAM, 0) s1_ai = Addrinfo.unix("/tmp/sock1") s1.bind(s1_ai) s2 = Socket.new(:UNIX, :DGRAM, 0) s2_ai = Addrinfo.unix("/tmp/sock2") s2.bind(s2_ai) s3 = UNIXSocket.for_fd(s2.fileno) s1.send "a", 0, s2_ai p s3.recvfrom(10) #=> ["a", ["AF_UNIX", "/tmp/sock1"]]
static VALUE unix_recvfrom(int argc, VALUE *argv, VALUE sock) { return rsock_s_recvfrom(sock, argc, argv, RECV_UNIX); }
send_io(io) → nil 点击切换源代码
以文件描述符传递的方式发送io。
s1, s2 = UNIXSocket.pair s1.send_io STDOUT stdout = s2.recv_io p STDOUT.fileno #=> 1 p stdout.fileno #=> 6 stdout.puts "hello" # outputs "hello\n" to standard output.
io 可以是任何类型的 IO 对象或整数文件描述符。
static VALUE unix_send_io(VALUE sock, VALUE val) { int fd; rb_io_t *fptr; struct iomsg_arg arg; struct iovec vec[1]; char buf[1]; #if FD_PASSING_BY_MSG_CONTROL union { struct cmsghdr hdr; char pad[sizeof(struct cmsghdr)+8+sizeof(int)+8]; } cmsg; #endif if (rb_obj_is_kind_of(val, rb_cIO)) { rb_io_t *valfptr; GetOpenFile(val, valfptr); fd = valfptr->fd; } else if (FIXNUM_P(val)) { fd = FIX2INT(val); } else { rb_raise(rb_eTypeError, "neither IO nor file descriptor"); } GetOpenFile(sock, fptr); arg.msg.msg_name = NULL; arg.msg.msg_namelen = 0; /* Linux and Solaris doesn't work if msg_iov is NULL. */ buf[0] = '\0'; vec[0].iov_base = buf; vec[0].iov_len = 1; arg.msg.msg_iov = vec; arg.msg.msg_iovlen = 1; #if FD_PASSING_BY_MSG_CONTROL arg.msg.msg_control = (caddr_t)&cmsg; arg.msg.msg_controllen = (socklen_t)CMSG_LEN(sizeof(int)); arg.msg.msg_flags = 0; MEMZERO((char*)&cmsg, char, sizeof(cmsg)); cmsg.hdr.cmsg_len = (socklen_t)CMSG_LEN(sizeof(int)); cmsg.hdr.cmsg_level = SOL_SOCKET; cmsg.hdr.cmsg_type = SCM_RIGHTS; memcpy(CMSG_DATA(&cmsg.hdr), &fd, sizeof(int)); #else arg.msg.msg_accrights = (caddr_t)&fd; arg.msg.msg_accrightslen = sizeof(fd); #endif arg.fd = fptr->fd; while ((int)BLOCKING_REGION_FD(sendmsg_blocking, &arg) == -1) { if (!rb_io_wait_writable(arg.fd)) rsock_sys_fail_path("sendmsg(2)", fptr->pathv); } return Qnil; }