类 Fiddle::Function
描述¶ ↑
C 函数的表示
示例¶ ↑
‘strcpy’¶ ↑
@libc = Fiddle.dlopen "/lib/libc.so.6" #=> #<Fiddle::Handle:0x00000001d7a8d8> f = Fiddle::Function.new( @libc['strcpy'], [Fiddle::TYPE_VOIDP, Fiddle::TYPE_VOIDP], Fiddle::TYPE_VOIDP) #=> #<Fiddle::Function:0x00000001d8ee00> buff = "000" #=> "000" str = f.call(buff, "123") #=> #<Fiddle::Pointer:0x00000001d0c380 ptr=0x000000018a21b8 size=0 free=0x00000000000000> str.to_s => "123"
ABI 检查¶ ↑
@libc = Fiddle.dlopen "/lib/libc.so.6" #=> #<Fiddle::Handle:0x00000001d7a8d8> f = Fiddle::Function.new(@libc['strcpy'], [TYPE_VOIDP, TYPE_VOIDP], TYPE_VOIDP) #=> #<Fiddle::Function:0x00000001d8ee00> f.abi == Fiddle::Function::DEFAULT #=> true
常量
属性
abi[R]
Function
的 ABI。
name[R]
此函数的名称
ptr[R]
此函数的地址
公共类方法
new(ptr, 点击切换源代码
args,
ret_type,
abi = DEFAULT,
name: nil,
need_gvl: false)
构造一个 Function
对象。
-
ptr
是一个引用函数,属于Fiddle::Handle
-
args
是一个传递给ptr
函数的参数数组 -
ret_type
是函数的返回类型 -
abi
是函数的 ABI -
name
是函数的名称 -
need_gvl
指示是否需要 GVL 来调用函数
static VALUE initialize(int argc, VALUE argv[], VALUE self) { ffi_cif * cif; VALUE ptr, arg_types, ret_type, abi, kwargs; VALUE name = Qnil; VALUE need_gvl = Qfalse; int c_ret_type; bool is_variadic = false; ffi_abi c_ffi_abi; void *cfunc; rb_scan_args(argc, argv, "31:", &ptr, &arg_types, &ret_type, &abi, &kwargs); rb_iv_set(self, "@closure", ptr); if (!NIL_P(kwargs)) { enum { kw_name, kw_need_gvl, kw_max_, }; static ID kw[kw_max_]; VALUE args[kw_max_]; if (!kw[0]) { kw[kw_name] = rb_intern_const("name"); kw[kw_need_gvl] = rb_intern_const("need_gvl"); } rb_get_kwargs(kwargs, kw, 0, kw_max_, args); if (args[kw_name] != Qundef) { name = args[kw_name]; } if (args[kw_need_gvl] != Qundef) { need_gvl = args[kw_need_gvl]; } } rb_iv_set(self, "@name", name); rb_iv_set(self, "@need_gvl", need_gvl); ptr = rb_Integer(ptr); cfunc = NUM2PTR(ptr); PTR2NUM(cfunc); c_ffi_abi = NIL_P(abi) ? FFI_DEFAULT_ABI : NUM2INT(abi); abi = INT2FIX(c_ffi_abi); ret_type = rb_fiddle_type_ensure(ret_type); c_ret_type = NUM2INT(ret_type); (void)INT2FFI_TYPE(c_ret_type); /* raise */ ret_type = INT2FIX(c_ret_type); arg_types = normalize_argument_types("argument types", arg_types, &is_variadic); #ifndef HAVE_FFI_PREP_CIF_VAR if (is_variadic) { rb_raise(rb_eNotImpError, "ffi_prep_cif_var() is required in libffi " "for variadic arguments"); } #endif rb_iv_set(self, "@ptr", ptr); rb_iv_set(self, "@argument_types", arg_types); rb_iv_set(self, "@return_type", ret_type); rb_iv_set(self, "@abi", abi); rb_iv_set(self, "@is_variadic", is_variadic ? Qtrue : Qfalse); TypedData_Get_Struct(self, ffi_cif, &function_data_type, cif); cif->arg_types = NULL; return self; }
公共实例方法
call(*args) 点击切换源代码
调用已构造的 Function
,并传入 args
。如果在多线程进程中运行,调用者必须确保底层函数以线程安全的方式调用。
请注意,除非您在 Fiddle::Function#new 中不传递 +need_gvl: true+,否则使用此方法直接或间接调用许多 Ruby C 扩展 API 是不安全的。
有关示例,请参见 Fiddle::Function
static VALUE function_call(int argc, VALUE argv[], VALUE self) { struct nogvl_ffi_call_args args = { 0 }; fiddle_generic *generic_args; VALUE cfunc; VALUE abi; VALUE arg_types; VALUE cPointer; VALUE is_variadic; VALUE need_gvl; int n_arg_types; int n_fixed_args = 0; int n_call_args = 0; int i; int i_call; VALUE converted_args = Qnil; VALUE alloc_buffer = 0; cfunc = rb_iv_get(self, "@ptr"); abi = rb_iv_get(self, "@abi"); arg_types = rb_iv_get(self, "@argument_types"); cPointer = rb_const_get(mFiddle, rb_intern("Pointer")); is_variadic = rb_iv_get(self, "@is_variadic"); need_gvl = rb_iv_get(self, "@need_gvl"); n_arg_types = RARRAY_LENINT(arg_types); n_fixed_args = n_arg_types; if (RTEST(is_variadic)) { if (argc < n_arg_types) { rb_error_arity(argc, n_arg_types, UNLIMITED_ARGUMENTS); } if (((argc - n_arg_types) % 2) != 0) { rb_raise(rb_eArgError, "variadic arguments must be type and value pairs: " "%"PRIsVALUE, rb_ary_new_from_values(argc, argv)); } n_call_args = n_arg_types + ((argc - n_arg_types) / 2); } else { if (argc != n_arg_types) { rb_error_arity(argc, n_arg_types, n_arg_types); } n_call_args = n_arg_types; } Check_Max_Args("the number of arguments", n_call_args); TypedData_Get_Struct(self, ffi_cif, &function_data_type, args.cif); if (is_variadic && args.cif->arg_types) { xfree(args.cif->arg_types); args.cif->arg_types = NULL; } if (!args.cif->arg_types) { VALUE fixed_arg_types = arg_types; VALUE return_type; int c_return_type; ffi_type *ffi_return_type; ffi_type **ffi_arg_types; ffi_status result; arg_types = rb_ary_dup(fixed_arg_types); for (i = n_fixed_args; i < argc; i += 2) { VALUE arg_type = argv[i]; int c_arg_type; arg_type = rb_fiddle_type_ensure(arg_type); c_arg_type = NUM2INT(arg_type); (void)INT2FFI_TYPE(c_arg_type); /* raise */ rb_ary_push(arg_types, INT2FIX(c_arg_type)); } return_type = rb_iv_get(self, "@return_type"); c_return_type = FIX2INT(return_type); ffi_return_type = INT2FFI_TYPE(c_return_type); ffi_arg_types = xcalloc(n_call_args + 1, sizeof(ffi_type *)); for (i_call = 0; i_call < n_call_args; i_call++) { VALUE arg_type; int c_arg_type; arg_type = RARRAY_AREF(arg_types, i_call); c_arg_type = FIX2INT(arg_type); ffi_arg_types[i_call] = INT2FFI_TYPE(c_arg_type); } ffi_arg_types[i_call] = NULL; if (is_variadic) { #ifdef HAVE_FFI_PREP_CIF_VAR result = ffi_prep_cif_var(args.cif, FIX2INT(abi), n_fixed_args, n_call_args, ffi_return_type, ffi_arg_types); #else /* This code is never used because ffi_prep_cif_var() * availability check is done in #initialize. */ result = FFI_BAD_TYPEDEF; #endif } else { result = ffi_prep_cif(args.cif, FIX2INT(abi), n_call_args, ffi_return_type, ffi_arg_types); } if (result != FFI_OK) { xfree(ffi_arg_types); args.cif->arg_types = NULL; rb_raise(rb_eRuntimeError, "error creating CIF %d", result); } } generic_args = ALLOCV(alloc_buffer, sizeof(fiddle_generic) * n_call_args + sizeof(void *) * (n_call_args + 1)); args.values = (void **)((char *)generic_args + sizeof(fiddle_generic) * n_call_args); for (i = 0, i_call = 0; i < argc && i_call < n_call_args; i++, i_call++) { VALUE arg_type; int c_arg_type; VALUE original_src; VALUE src; arg_type = RARRAY_AREF(arg_types, i_call); c_arg_type = FIX2INT(arg_type); if (i >= n_fixed_args) { i++; } src = argv[i]; if (c_arg_type == TYPE_VOIDP) { if (NIL_P(src)) { src = INT2FIX(0); } else if (cPointer != CLASS_OF(src)) { src = rb_funcall(cPointer, rb_intern("[]"), 1, src); if (NIL_P(converted_args)) { converted_args = rb_ary_new(); } rb_ary_push(converted_args, src); } src = rb_Integer(src); } original_src = src; VALUE2GENERIC(c_arg_type, src, &generic_args[i_call]); if (src != original_src) { if (NIL_P(converted_args)) { converted_args = rb_ary_new(); } rb_ary_push(converted_args, src); } args.values[i_call] = (void *)&generic_args[i_call]; } args.values[i_call] = NULL; args.fn = (void(*)(void))NUM2PTR(cfunc); if (RTEST(need_gvl)) { ffi_call(args.cif, args.fn, &(args.retval), args.values); } else { (void)rb_thread_call_without_gvl(nogvl_ffi_call, &args, 0, 0); } { int errno_keep = errno; #if defined(_WIN32) DWORD error = WSAGetLastError(); int socket_error = WSAGetLastError(); rb_funcall(mFiddle, rb_intern("win32_last_error="), 1, ULONG2NUM(error)); rb_funcall(mFiddle, rb_intern("win32_last_socket_error="), 1, INT2NUM(socket_error)); #endif rb_funcall(mFiddle, rb_intern("last_error="), 1, INT2NUM(errno_keep)); } ALLOCV_END(alloc_buffer); return GENERIC2VALUE(rb_iv_get(self, "@return_type"), args.retval); }
need_gvl?() 点击切换源代码
是否需要 GVL 来调用此函数
# File fiddle/lib/fiddle/function.rb, line 14 def need_gvl? @need_gvl end
to_i() 点击切换源代码
此函数的整数内存位置
# File fiddle/lib/fiddle/function.rb, line 19 def to_i ptr.to_i end
to_proc() 点击切换源代码
将此函数转换为 proc
# File fiddle/lib/fiddle/function.rb, line 24 def to_proc this = self lambda { |*args| this.call(*args) } end