class RubyVM::RJIT::InsnCompiler

常量

CallingInfo

结构体 rb_calling_info。存储标志而不是 ci。

公共实例方法

assert(cond) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5908
def assert(cond)
  assert_equal(cond, true)
end
assert_equal(left, right) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5912
def assert_equal(left, right)
  if left != right
    raise "'#{left.inspect}' was not '#{right.inspect}'"
  end
end
build_calling(ci:, block_handler:) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 6035
def build_calling(ci:, block_handler:)
  CallingInfo.new(
    argc: C.vm_ci_argc(ci),
    flags: C.vm_ci_flag(ci),
    kwarg: C.vm_ci_kwarg(ci),
    ci_addr: ci.to_i,
    send_shift: 0,
    block_handler:,
  )
end
builtin_function(iseq) 单击以切换源代码

如果给定的 iseq 仅由该内置函数组成,则返回一个内置函数

# File ruby_vm/rjit/insn_compiler.rb, line 6025
def builtin_function(iseq)
  opt_invokebuiltin_delegate_leave = INSNS.values.find { |i| i.name == :opt_invokebuiltin_delegate_leave }
  leave = INSNS.values.find { |i| i.name == :leave }
  if iseq.body.iseq_size == opt_invokebuiltin_delegate_leave.len + leave.len &&
      C.rb_vm_insn_decode(iseq.body.iseq_encoded[0]) == opt_invokebuiltin_delegate_leave.bin &&
      C.rb_vm_insn_decode(iseq.body.iseq_encoded[opt_invokebuiltin_delegate_leave.len]) == leave.bin
    C.rb_builtin_function.new(iseq.body.iseq_encoded[1])
  end
end
c_method_tracing_currently_enabled?() 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 6020
def c_method_tracing_currently_enabled?
  C.rb_rjit_global_events & (C::RUBY_EVENT_C_CALL | C::RUBY_EVENT_C_RETURN) != 0
end
compile_jit_direct_jump(branch_stub, comment:) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5969
def compile_jit_direct_jump(branch_stub, comment:) # Proc escapes arguments in memory
  proc do |branch_asm|
    branch_asm.comment(comment)
    branch_asm.stub(branch_stub) do
      case branch_stub.shape
      in Default
        branch_asm.jmp(branch_stub.target0.address)
      in Next0
        # Just write the block without a jump
      end
    end
  end
end
compile_jit_return(branch_stub, cfp_offset:) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5732
def compile_jit_return(branch_stub, cfp_offset:) # Proc escapes arguments in memory
  proc do |branch_asm|
    branch_asm.comment('set jit_return to callee CFP')
    branch_asm.stub(branch_stub) do
      case branch_stub.shape
      in Default
        branch_asm.mov(:rax, branch_stub.target0.address)
        branch_asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:jit_return)], :rax)
      end
    end
  end
end
counted_exit(side_exit, name) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5997
def counted_exit(side_exit, name)
  asm = Assembler.new
  asm.incr_counter(name)
  asm.jmp(side_exit)
  @ocb.write(asm)
end
def_iseq_ptr(cme_def) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 6004
def def_iseq_ptr(cme_def)
  C.rb_iseq_check(cme_def.body.iseq.iseqptr)
end
defer_compilation(jit, ctx, asm) 单击以切换源代码

@param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5946
def defer_compilation(jit, ctx, asm)
  # Make a stub to compile the current insn
  if ctx.chain_depth != 0
    raise "double defer!"
  end
  ctx.chain_depth += 1
  jit_direct_jump(jit.iseq, jit.pc, ctx, asm, comment: 'defer_compilation')
end
dynamic_symbol?(obj) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5934
def dynamic_symbol?(obj)
  return false if C::SPECIAL_CONST_P(obj)
  C.RB_TYPE_P(obj, C::RUBY_T_SYMBOL)
end
fixnum?(obj) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5918
def fixnum?(obj)
  (C.to_value(obj) & C::RUBY_FIXNUM_FLAG) == C::RUBY_FIXNUM_FLAG
end
flonum?(obj) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5922
def flonum?(obj)
  (C.to_value(obj) & C::RUBY_FLONUM_MASK) == C::RUBY_FLONUM_FLAG
end
full_cfunc_return() 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 6013
def full_cfunc_return
  @full_cfunc_return ||= Assembler.new.then do |asm|
    @exit_compiler.compile_full_cfunc_return(asm)
    @ocb.write(asm)
  end
end
guard_block_arg(jit, ctx, asm, calling) 单击以切换源代码

vm_caller_setup_arg_block:处理 VM_CALL_ARGS_BLOCKARG 情况。@param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 4249
def guard_block_arg(jit, ctx, asm, calling)
  if calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0
    block_arg_type = ctx.get_opnd_type(StackOpnd[0])
    case block_arg_type
    in Type::Nil
      calling.block_handler = C::VM_BLOCK_HANDLER_NONE
    in Type::BlockParamProxy
      calling.block_handler = C.rb_block_param_proxy
    else
      asm.incr_counter(:send_block_arg)
      return CantCompile
    end
  end
end
handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) 单击以切换源代码

vm_call_opt_send(延迟部分)@param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5551
def handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
  # We don't support `send(:send, ...)` for now.
  assert_equal(1, send_shift)

  asm.comment('shift stack')
  (0...argc).reverse_each do |i|
    opnd = ctx.stack_opnd(i)
    opnd2 = ctx.stack_opnd(i + 1)
    asm.mov(:rax, opnd)
    asm.mov(opnd2, :rax)
  end

  ctx.shift_stack(argc)
end
jit_array_len(asm, array_reg, len_reg) 单击以切换源代码

生成 RARRAY_LEN。对于 array_opnd,使用 Opnd::Reg 来减少内存访问,并使用 Opnd::Mem 来保存寄存器。

# File ruby_vm/rjit/insn_compiler.rb, line 5878
def jit_array_len(asm, array_reg, len_reg)
  asm.comment('get array length for embedded or heap')

  # Pull out the embed flag to check if it's an embedded array.
  asm.mov(len_reg, [array_reg, C.RBasic.offsetof(:flags)])

  # Get the length of the array
  asm.and(len_reg, C::RARRAY_EMBED_LEN_MASK)
  asm.sar(len_reg, C::RARRAY_EMBED_LEN_SHIFT)

  # Conditionally move the length of the heap array
  asm.test([array_reg, C.RBasic.offsetof(:flags)], C::RARRAY_EMBED_FLAG)

  # Select the array length value
  asm.cmovz(len_reg, [array_reg, C.RArray.offsetof(:as, :heap, :len)])
end
jit_array_ptr(asm, array_reg, ary_opnd) 单击以切换源代码

生成 RARRAY_CONST_PTR(RARRAY_AREF 的一部分)

# File ruby_vm/rjit/insn_compiler.rb, line 5896
def jit_array_ptr(asm, array_reg, ary_opnd) # clobbers array_reg
  asm.comment('get array pointer for embedded or heap')

  flags_opnd = [array_reg, C.RBasic.offsetof(:flags)]
  asm.test(flags_opnd, C::RARRAY_EMBED_FLAG)
  # Load the address of the embedded array
  # (struct RArray *)(obj)->as.ary
  asm.mov(ary_opnd, [array_reg, C.RArray.offsetof(:as, :heap, :ptr)])
  asm.lea(array_reg, [array_reg, C.RArray.offsetof(:as, :ary)]) # clobbers array_reg
  asm.cmovnz(ary_opnd, array_reg)
end
jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) 单击以切换源代码

vm_call_alias @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5382
def jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
  cme = C.rb_aliased_callable_method_entry(cme)
  jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
end
jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) 单击以切换源代码

vm_call_attrset @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5252
def jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd)
  argc = calling.argc
  flags = calling.flags
  send_shift = calling.send_shift

  if flags & C::VM_CALL_ARGS_SPLAT != 0
    asm.incr_counter(:send_attrset_splat)
    return CantCompile
  end
  if flags & C::VM_CALL_KWARG != 0
    asm.incr_counter(:send_attrset_kwarg)
    return CantCompile
  elsif argc != 1 || !C.RB_TYPE_P(comptime_recv, C::RUBY_T_OBJECT)
    asm.incr_counter(:send_attrset_method)
    return CantCompile
  elsif c_method_tracing_currently_enabled?
    # Can't generate code for firing c_call and c_return events
    # See :attr-tracing:
    asm.incr_counter(:send_c_tracingg)
    return CantCompile
  elsif flags & C::VM_CALL_ARGS_BLOCKARG != 0
    asm.incr_counter(:send_block_arg)
    return CantCompile
  end

  ivar_name = cme.def.body.attr.id

  # This is a .send call and we need to adjust the stack
  if flags & C::VM_CALL_OPT_SEND != 0
    handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
  end

  # Save the PC and SP because the callee may allocate
  # Note that this modifies REG_SP, which is why we do it first
  jit_prepare_routine_call(jit, ctx, asm)

  # Get the operands from the stack
  val_opnd = ctx.stack_pop(1)
  recv_opnd = ctx.stack_pop(1)

  # Call rb_vm_set_ivar_id with the receiver, the ivar name, and the value
  asm.mov(C_ARGS[0], recv_opnd)
  asm.mov(C_ARGS[1], ivar_name)
  asm.mov(C_ARGS[2], val_opnd)
  asm.call(C.rb_vm_set_ivar_id)

  out_opnd = ctx.stack_push(Type::Unknown)
  asm.mov(out_opnd, C_RET)

  KeepCompiling
end
jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) 单击以切换源代码

vm_call_bmethod @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5343
def jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
  proc_addr = cme.def.body.bmethod.proc

  proc_t = C.rb_yjit_get_proc_ptr(proc_addr)
  proc_block = proc_t.block

  if proc_block.type != C.block_type_iseq
    asm.incr_counter(:send_bmethod_not_iseq)
    return CantCompile
  end

  capture = proc_block.as.captured
  iseq = capture.code.iseq

  # TODO: implement this
  # Optimize for single ractor mode and avoid runtime check for
  # "defined with an un-shareable Proc in a different Ractor"
  # if !assume_single_ractor_mode(jit, ocb)
  #     return CantCompile;
  # end

  # Passing a block to a block needs logic different from passing
  # a block to a method and sometimes requires allocation. Bail for now.
  if calling.block_handler != C::VM_BLOCK_HANDLER_NONE
    asm.incr_counter(:send_bmethod_blockarg)
    return CantCompile
  end

  jit_call_iseq(
    jit, ctx, asm, cme, calling, iseq,
    frame_type: C::VM_FRAME_MAGIC_BLOCK | C::VM_FRAME_FLAG_BMETHOD | C::VM_FRAME_FLAG_LAMBDA,
    prev_ep: capture.ep,
  )
end
jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class: nil) 单击以切换源代码

vm_call_cfunc @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5024
def jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class: nil)
  argc = calling.argc
  flags = calling.flags

  cfunc = cme.def.body.cfunc
  cfunc_argc = cfunc.argc

  # If the function expects a Ruby array of arguments
  if cfunc_argc < 0 && cfunc_argc != -1
    asm.incr_counter(:send_cfunc_ruby_array_varg)
    return CantCompile
  end

  # We aren't handling a vararg cfuncs with splat currently.
  if flags & C::VM_CALL_ARGS_SPLAT != 0 && cfunc_argc == -1
    asm.incr_counter(:send_args_splat_cfunc_var_args)
    return CantCompile
  end

  if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_ZSUPER != 0
    # zsuper methods are super calls without any arguments.
    # They are also marked as splat, but don't actually have an array
    # they pull arguments from, instead we need to change to call
    # a different method with the current stack.
    asm.incr_counter(:send_args_splat_cfunc_zuper)
    return CantCompile;
  end

  # In order to handle backwards compatibility between ruby 3 and 2
  # ruby2_keywords was introduced. It is called only on methods
  # with splat and changes they way they handle them.
  # We are just going to not compile these.
  # https://docs.ruby-lang.org.cn/en/3.2/Module.html#method-i-ruby2_keywords
  if jit.iseq.body.param.flags.ruby2_keywords && flags & C::VM_CALL_ARGS_SPLAT != 0
    asm.incr_counter(:send_args_splat_cfunc_ruby2_keywords)
    return CantCompile;
  end

  kw_arg = calling.kwarg
  kw_arg_num = if kw_arg.nil?
    0
  else
    kw_arg.keyword_len
  end

  if kw_arg_num != 0 && flags & C::VM_CALL_ARGS_SPLAT != 0
    asm.incr_counter(:send_cfunc_splat_with_kw)
    return CantCompile
  end

  if c_method_tracing_currently_enabled?
    # Don't JIT if tracing c_call or c_return
    asm.incr_counter(:send_cfunc_tracing)
    return CantCompile
  end

  # Delegate to codegen for C methods if we have it.
  if kw_arg.nil? && flags & C::VM_CALL_OPT_SEND == 0 && flags & C::VM_CALL_ARGS_SPLAT == 0 && (cfunc_argc == -1 || argc == cfunc_argc)
    known_cfunc_codegen = lookup_cfunc_codegen(cme.def)
    if known_cfunc_codegen&.call(jit, ctx, asm, argc, known_recv_class)
      # cfunc codegen generated code. Terminate the block so
      # there isn't multiple calls in the same block.
      jump_to_next_insn(jit, ctx, asm)
      return EndBlock
    end
  end

  # Check for interrupts
  jit_check_ints(jit, ctx, asm)

  # Stack overflow check
  # #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
  # REG_CFP <= REG_SP + 4 * SIZEOF_VALUE + sizeof(rb_control_frame_t)
  asm.comment('stack overflow check')
  asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * 4 + 2 * C.rb_control_frame_t.size))
  asm.cmp(CFP, :rax)
  asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow))

  # Number of args which will be passed through to the callee
  # This is adjusted by the kwargs being combined into a hash.
  passed_argc = if kw_arg.nil?
    argc
  else
    argc - kw_arg_num + 1
  end

  # If the argument count doesn't match
  if cfunc_argc >= 0 && cfunc_argc != passed_argc && flags & C::VM_CALL_ARGS_SPLAT == 0
    asm.incr_counter(:send_cfunc_argc_mismatch)
    return CantCompile
  end

  # Don't JIT functions that need C stack arguments for now
  if cfunc_argc >= 0 && passed_argc + 1 > C_ARGS.size
    asm.incr_counter(:send_cfunc_toomany_args)
    return CantCompile
  end

  block_arg = flags & C::VM_CALL_ARGS_BLOCKARG != 0

  # Guard block_arg_type
  if guard_block_arg(jit, ctx, asm, calling) == CantCompile
    return CantCompile
  end

  if block_arg
    ctx.stack_pop(1)
  end

  # push_splat_args does stack manipulation so we can no longer side exit
  if flags & C::VM_CALL_ARGS_SPLAT != 0
    assert_equal(true, cfunc_argc >= 0)
    required_args = cfunc_argc - (argc - 1)
    # + 1 because we pass self
    if required_args + 1 >= C_ARGS.size
      asm.incr_counter(:send_cfunc_toomany_args)
      return CantCompile
    end

    # We are going to assume that the splat fills
    # all the remaining arguments. So the number of args
    # should just equal the number of args the cfunc takes.
    # In the generated code we test if this is true
    # and if not side exit.
    argc = cfunc_argc
    passed_argc = argc
    push_splat_args(required_args, jit, ctx, asm)
  end

  # This is a .send call and we need to adjust the stack
  if flags & C::VM_CALL_OPT_SEND != 0
    handle_opt_send_shift_stack(asm, argc, ctx, send_shift: calling.send_shift)
  end

  # Points to the receiver operand on the stack

  # Store incremented PC into current control frame in case callee raises.
  jit_save_pc(jit, asm)

  # Increment the stack pointer by 3 (in the callee)
  # sp += 3

  frame_type = C::VM_FRAME_MAGIC_CFUNC | C::VM_FRAME_FLAG_CFRAME | C::VM_ENV_FLAG_LOCAL
  if kw_arg
    frame_type |= C::VM_FRAME_FLAG_CFRAME_KW
  end

  jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, calling.block_handler)

  if kw_arg
    # Build a hash from all kwargs passed
    asm.comment('build_kwhash')
    imemo_ci = calling.ci_addr
    # we assume all callinfos with kwargs are on the GC heap
    assert_equal(true, C.imemo_type_p(imemo_ci, C.imemo_callinfo))
    asm.mov(C_ARGS[0], imemo_ci)
    asm.lea(C_ARGS[1], ctx.sp_opnd(0))
    asm.call(C.rjit_build_kwhash)

    # Replace the stack location at the start of kwargs with the new hash
    stack_opnd = ctx.stack_opnd(argc - passed_argc)
    asm.mov(stack_opnd, C_RET)
  end

  # Copy SP because REG_SP will get overwritten
  sp = :rax
  asm.lea(sp, ctx.sp_opnd(0))

  # Pop the C function arguments from the stack (in the caller)
  ctx.stack_pop(argc + 1)

  # Write interpreter SP into CFP.
  # Needed in case the callee yields to the block.
  jit_save_sp(ctx, asm)

  # Non-variadic method
  case cfunc_argc
  in (0..) # Non-variadic method
    # Copy the arguments from the stack to the C argument registers
    # self is the 0th argument and is at index argc from the stack top
    (0..passed_argc).each do |i|
      asm.mov(C_ARGS[i], [sp, -(argc + 1 - i) * C.VALUE.size])
    end
  in -1 # Variadic method: rb_f_puts(int argc, VALUE *argv, VALUE recv)
    # The method gets a pointer to the first argument
    # rb_f_puts(int argc, VALUE *argv, VALUE recv)
    asm.mov(C_ARGS[0], passed_argc)
    asm.lea(C_ARGS[1], [sp, -argc * C.VALUE.size]) # argv
    asm.mov(C_ARGS[2], [sp, -(argc + 1) * C.VALUE.size]) # recv
  end

  # Call the C function
  # VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
  # cfunc comes from compile-time cme->def, which we assume to be stable.
  # Invalidation logic is in yjit_method_lookup_change()
  asm.comment('call C function')
  asm.mov(:rax, cfunc.func)
  asm.call(:rax) # TODO: use rel32 if close enough

  # Record code position for TracePoint patching. See full_cfunc_return().
  Invariants.record_global_inval_patch(asm, full_cfunc_return)

  # Push the return value on the Ruby stack
  stack_ret = ctx.stack_push(Type::Unknown)
  asm.mov(stack_ret, C_RET)

  # Pop the stack frame (ec->cfp++)
  # Instead of recalculating, we can reuse the previous CFP, which is stored in a callee-saved
  # register
  asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], CFP)

  # cfunc calls may corrupt types
  ctx.clear_local_types

  # Note: the return block of jit_call_iseq has ctx->sp_offset == 1
  # which allows for sharing the same successor.

  # Jump (fall through) to the call continuation block
  # We do this to end the current block after the call
  assert_equal(1, ctx.sp_offset)
  jump_to_next_insn(jit, ctx, asm)
  EndBlock
end
jit_call_general(jit, ctx, asm, mid, calling, cme, known_recv_class) 单击以切换源代码

vm_call_general @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 4308
def jit_call_general(jit, ctx, asm, mid, calling, cme, known_recv_class)
  jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class)
end
jit_call_iseq(jit, ctx, asm, cme, calling, iseq, frame_type: nil, prev_ep: nil) 单击以切换源代码

vm_call_iseq_setup @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 4403
def jit_call_iseq(jit, ctx, asm, cme, calling, iseq, frame_type: nil, prev_ep: nil)
  argc = calling.argc
  flags = calling.flags
  send_shift = calling.send_shift

  # When you have keyword arguments, there is an extra object that gets
  # placed on the stack the represents a bitmap of the keywords that were not
  # specified at the call site. We need to keep track of the fact that this
  # value is present on the stack in order to properly set up the callee's
  # stack pointer.
  doing_kw_call = iseq.body.param.flags.has_kw
  supplying_kws = flags & C::VM_CALL_KWARG != 0

  if flags & C::VM_CALL_TAILCALL != 0
    # We can't handle tailcalls
    asm.incr_counter(:send_tailcall)
    return CantCompile
  end

  # No support for callees with these parameters yet as they require allocation
  # or complex handling.
  if iseq.body.param.flags.has_post
    asm.incr_counter(:send_iseq_has_opt)
    return CantCompile
  end
  if iseq.body.param.flags.has_kwrest
    asm.incr_counter(:send_iseq_has_kwrest)
    return CantCompile
  end

  # In order to handle backwards compatibility between ruby 3 and 2
  # ruby2_keywords was introduced. It is called only on methods
  # with splat and changes they way they handle them.
  # We are just going to not compile these.
  # https://www.rubydoc.info/stdlib/core/Proc:ruby2_keywords
  if iseq.body.param.flags.ruby2_keywords && flags & C::VM_CALL_ARGS_SPLAT != 0
    asm.incr_counter(:send_iseq_ruby2_keywords)
    return CantCompile
  end

  iseq_has_rest = iseq.body.param.flags.has_rest
  if iseq_has_rest && calling.block_handler == :captured
    asm.incr_counter(:send_iseq_has_rest_and_captured)
    return CantCompile
  end

  if iseq_has_rest && iseq.body.param.flags.has_kw && supplying_kws
    asm.incr_counter(:send_iseq_has_rest_and_kw_supplied)
    return CantCompile
  end

  # If we have keyword arguments being passed to a callee that only takes
  # positionals, then we need to allocate a hash. For now we're going to
  # call that too complex and bail.
  if supplying_kws && !iseq.body.param.flags.has_kw
    asm.incr_counter(:send_iseq_has_no_kw)
    return CantCompile
  end

  # If we have a method accepting no kwargs (**nil), exit if we have passed
  # it any kwargs.
  if supplying_kws && iseq.body.param.flags.accepts_no_kwarg
    asm.incr_counter(:send_iseq_accepts_no_kwarg)
    return CantCompile
  end

  # For computing number of locals to set up for the callee
  num_params = iseq.body.param.size

  # Block parameter handling. This mirrors setup_parameters_complex().
  if iseq.body.param.flags.has_block
    if iseq.body.local_iseq.to_i == iseq.to_i
      num_params -= 1
    else
      # In this case (param.flags.has_block && local_iseq != iseq),
      # the block argument is setup as a local variable and requires
      # materialization (allocation). Bail.
      asm.incr_counter(:send_iseq_materialized_block)
      return CantCompile
    end
  end

  if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_ZSUPER != 0
    # zsuper methods are super calls without any arguments.
    # They are also marked as splat, but don't actually have an array
    # they pull arguments from, instead we need to change to call
    # a different method with the current stack.
    asm.incr_counter(:send_iseq_zsuper)
    return CantCompile
  end

  start_pc_offset = 0
  required_num = iseq.body.param.lead_num

  # This struct represents the metadata about the caller-specified
  # keyword arguments.
  kw_arg = calling.kwarg
  kw_arg_num = if kw_arg.nil?
    0
  else
    kw_arg.keyword_len
  end

  # Arity handling and optional parameter setup
  opts_filled = argc - required_num - kw_arg_num
  opt_num = iseq.body.param.opt_num
  opts_missing = opt_num - opts_filled

  if doing_kw_call && flags & C::VM_CALL_ARGS_SPLAT != 0
    asm.incr_counter(:send_iseq_splat_with_kw)
    return CantCompile
  end

  if flags & C::VM_CALL_KW_SPLAT != 0
    asm.incr_counter(:send_iseq_kw_splat)
    return CantCompile
  end

  if iseq_has_rest && opt_num != 0
    asm.incr_counter(:send_iseq_has_rest_and_optional)
    return CantCompile
  end

  if opts_filled < 0 && flags & C::VM_CALL_ARGS_SPLAT == 0
    # Too few arguments and no splat to make up for it
    asm.incr_counter(:send_iseq_arity_error)
    return CantCompile
  end

  if opts_filled > opt_num && !iseq_has_rest
    # Too many arguments and no place to put them (i.e. rest arg)
    asm.incr_counter(:send_iseq_arity_error)
    return CantCompile
  end

  block_arg = flags & C::VM_CALL_ARGS_BLOCKARG != 0

  # Guard block_arg_type
  if guard_block_arg(jit, ctx, asm, calling) == CantCompile
    return CantCompile
  end

  # If we have unfilled optional arguments and keyword arguments then we
  # would need to adjust the arguments location to account for that.
  # For now we aren't handling this case.
  if doing_kw_call && opts_missing > 0
    asm.incr_counter(:send_iseq_missing_optional_kw)
    return CantCompile
  end

  # We will handle splat case later
  if opt_num > 0 && flags & C::VM_CALL_ARGS_SPLAT == 0
    num_params -= opts_missing
    start_pc_offset = iseq.body.param.opt_table[opts_filled]
  end

  if doing_kw_call
    # Here we're calling a method with keyword arguments and specifying
    # keyword arguments at this call site.

    # This struct represents the metadata about the callee-specified
    # keyword parameters.
    keyword = iseq.body.param.keyword
    keyword_num = keyword.num
    keyword_required_num = keyword.required_num

    required_kwargs_filled = 0

    if keyword_num > 30
      # We have so many keywords that (1 << num) encoded as a FIXNUM
      # (which shifts it left one more) no longer fits inside a 32-bit
      # immediate.
      asm.incr_counter(:send_iseq_too_many_kwargs)
      return CantCompile
    end

    # Check that the kwargs being passed are valid
    if supplying_kws
      # This is the list of keyword arguments that the callee specified
      # in its initial declaration.
      # SAFETY: see compile.c for sizing of this slice.
      callee_kwargs = keyword_num.times.map { |i| keyword.table[i] }

      # Here we're going to build up a list of the IDs that correspond to
      # the caller-specified keyword arguments. If they're not in the
      # same order as the order specified in the callee declaration, then
      # we're going to need to generate some code to swap values around
      # on the stack.
      caller_kwargs = []
      kw_arg.keyword_len.times do |kwarg_idx|
        sym = C.to_ruby(kw_arg[:keywords][kwarg_idx])
        caller_kwargs << C.rb_sym2id(sym)
      end

      # First, we're going to be sure that the names of every
      # caller-specified keyword argument correspond to a name in the
      # list of callee-specified keyword parameters.
      caller_kwargs.each do |caller_kwarg|
        search_result = callee_kwargs.map.with_index.find { |kwarg, _| kwarg == caller_kwarg }

        case search_result
        in nil
          # If the keyword was never found, then we know we have a
          # mismatch in the names of the keyword arguments, so we need to
          # bail.
          asm.incr_counter(:send_iseq_kwargs_mismatch)
          return CantCompile
        in _, callee_idx if callee_idx < keyword_required_num
          # Keep a count to ensure all required kwargs are specified
          required_kwargs_filled += 1
        else
        end
      end
    end
    assert_equal(true, required_kwargs_filled <= keyword_required_num)
    if required_kwargs_filled != keyword_required_num
      asm.incr_counter(:send_iseq_kwargs_mismatch)
      return CantCompile
    end
  end

  # Check if we need the arg0 splat handling of vm_callee_setup_block_arg
  arg_setup_block = (calling.block_handler == :captured) # arg_setup_type: arg_setup_block (invokeblock)
  block_arg0_splat = arg_setup_block && argc == 1 &&
    (iseq.body.param.flags.has_lead || opt_num > 1) &&
    !iseq.body.param.flags.ambiguous_param0
  if block_arg0_splat
    # If block_arg0_splat, we still need side exits after splat, but
    # doing push_splat_args here disallows it. So bail out.
    if flags & C::VM_CALL_ARGS_SPLAT != 0 && !iseq_has_rest
      asm.incr_counter(:invokeblock_iseq_arg0_args_splat)
      return CantCompile
    end
    # The block_arg0_splat implementation is for the rb_simple_iseq_p case,
    # but doing_kw_call means it's not a simple ISEQ.
    if doing_kw_call
      asm.incr_counter(:invokeblock_iseq_arg0_has_kw)
      return CantCompile
    end
    # The block_arg0_splat implementation cannot deal with optional parameters.
    # This is a setup_parameters_complex() situation and interacts with the
    # starting position of the callee.
    if opt_num > 1
      asm.incr_counter(:invokeblock_iseq_arg0_optional)
      return CantCompile
    end
  end
  if flags & C::VM_CALL_ARGS_SPLAT != 0 && !iseq_has_rest
    array = jit.peek_at_stack(block_arg ? 1 : 0)
    splat_array_length = if array.nil?
      0
    else
      array.length
    end

    if opt_num == 0 && required_num != splat_array_length + argc - 1
      asm.incr_counter(:send_iseq_splat_arity_error)
      return CantCompile
    end
  end

  # Don't compile forwardable iseqs
  if iseq.body.param.flags.forwardable
    return CantCompile
  end

  # We will not have CantCompile from here.

  if block_arg
    ctx.stack_pop(1)
  end

  if calling.block_handler == C::VM_BLOCK_HANDLER_NONE && iseq.body.builtin_attrs & C::BUILTIN_ATTR_LEAF != 0
    if jit_leaf_builtin_func(jit, ctx, asm, flags, iseq)
      return KeepCompiling
    end
  end

  # Number of locals that are not parameters
  num_locals = iseq.body.local_table_size - num_params

  # Stack overflow check
  # Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2.
  # #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
  asm.comment('stack overflow check')
  locals_offs = C.VALUE.size * (num_locals + iseq.body.stack_max) + 2 * C.rb_control_frame_t.size
  asm.lea(:rax, ctx.sp_opnd(locals_offs))
  asm.cmp(CFP, :rax)
  asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow))

  # push_splat_args does stack manipulation so we can no longer side exit
  if splat_array_length
    remaining_opt = (opt_num + required_num) - (splat_array_length + (argc - 1))

    if opt_num > 0
      # We are going to jump to the correct offset based on how many optional
      # params are remaining.
      offset = opt_num - remaining_opt
      start_pc_offset = iseq.body.param.opt_table[offset]
    end
    # We are going to assume that the splat fills
    # all the remaining arguments. In the generated code
    # we test if this is true and if not side exit.
    argc = argc - 1 + splat_array_length + remaining_opt
    push_splat_args(splat_array_length, jit, ctx, asm)

    remaining_opt.times do
      # We need to push nil for the optional arguments
      stack_ret = ctx.stack_push(Type::Unknown)
      asm.mov(stack_ret, Qnil)
    end
  end

  # This is a .send call and we need to adjust the stack
  if flags & C::VM_CALL_OPT_SEND != 0
    handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
  end

  if iseq_has_rest
    # We are going to allocate so setting pc and sp.
    jit_save_pc(jit, asm) # clobbers rax
    jit_save_sp(ctx, asm)

    if flags & C::VM_CALL_ARGS_SPLAT != 0
      non_rest_arg_count = argc - 1
      # We start by dupping the array because someone else might have
      # a reference to it.
      array = ctx.stack_pop(1)
      asm.mov(C_ARGS[0], array)
      asm.call(C.rb_ary_dup)
      array = C_RET
      if non_rest_arg_count > required_num
        # If we have more arguments than required, we need to prepend
        # the items from the stack onto the array.
        diff = (non_rest_arg_count - required_num)

        # diff is >0 so no need to worry about null pointer
        asm.comment('load pointer to array elements')
        offset_magnitude = C.VALUE.size * diff
        values_opnd = ctx.sp_opnd(-offset_magnitude)
        values_ptr = :rcx
        asm.lea(values_ptr, values_opnd)

        asm.comment('prepend stack values to rest array')
        asm.mov(C_ARGS[0], diff)
        asm.mov(C_ARGS[1], values_ptr)
        asm.mov(C_ARGS[2], array)
        asm.call(C.rb_ary_unshift_m)
        ctx.stack_pop(diff)

        stack_ret = ctx.stack_push(Type::TArray)
        asm.mov(stack_ret, C_RET)
        # We now should have the required arguments
        # and an array of all the rest arguments
        argc = required_num + 1
      elsif non_rest_arg_count < required_num
        # If we have fewer arguments than required, we need to take some
        # from the array and move them to the stack.
        diff = (required_num - non_rest_arg_count)
        # This moves the arguments onto the stack. But it doesn't modify the array.
        move_rest_args_to_stack(array, diff, jit, ctx, asm)

        # We will now slice the array to give us a new array of the correct size
        asm.mov(C_ARGS[0], array)
        asm.mov(C_ARGS[1], diff)
        asm.call(C.rjit_rb_ary_subseq_length)
        stack_ret = ctx.stack_push(Type::TArray)
        asm.mov(stack_ret, C_RET)

        # We now should have the required arguments
        # and an array of all the rest arguments
        argc = required_num + 1
      else
        # The arguments are equal so we can just push to the stack
        assert_equal(non_rest_arg_count, required_num)
        stack_ret = ctx.stack_push(Type::TArray)
        asm.mov(stack_ret, array)
      end
    else
      assert_equal(true, argc >= required_num)
      n = (argc - required_num)
      argc = required_num + 1
      # If n is 0, then elts is never going to be read, so we can just pass null
      if n == 0
        values_ptr = 0
      else
        asm.comment('load pointer to array elements')
        offset_magnitude = C.VALUE.size * n
        values_opnd = ctx.sp_opnd(-offset_magnitude)
        values_ptr = :rcx
        asm.lea(values_ptr, values_opnd)
      end

      asm.mov(C_ARGS[0], EC)
      asm.mov(C_ARGS[1], n)
      asm.mov(C_ARGS[2], values_ptr)
      asm.call(C.rb_ec_ary_new_from_values)

      ctx.stack_pop(n)
      stack_ret = ctx.stack_push(Type::TArray)
      asm.mov(stack_ret, C_RET)
    end
  end

  if doing_kw_call
    # Here we're calling a method with keyword arguments and specifying
    # keyword arguments at this call site.

    # Number of positional arguments the callee expects before the first
    # keyword argument
    args_before_kw = required_num + opt_num

    # This struct represents the metadata about the caller-specified
    # keyword arguments.
    ci_kwarg = calling.kwarg
    caller_keyword_len = if ci_kwarg.nil?
      0
    else
      ci_kwarg.keyword_len
    end

    # This struct represents the metadata about the callee-specified
    # keyword parameters.
    keyword = iseq.body.param.keyword

    asm.comment('keyword args')

    # This is the list of keyword arguments that the callee specified
    # in its initial declaration.
    callee_kwargs = keyword.table
    total_kwargs = keyword.num

    # Here we're going to build up a list of the IDs that correspond to
    # the caller-specified keyword arguments. If they're not in the
    # same order as the order specified in the callee declaration, then
    # we're going to need to generate some code to swap values around
    # on the stack.
    caller_kwargs = []

    caller_keyword_len.times do |kwarg_idx|
      sym = C.to_ruby(ci_kwarg[:keywords][kwarg_idx])
      caller_kwargs << C.rb_sym2id(sym)
    end
    kwarg_idx = caller_keyword_len

    unspecified_bits = 0

    keyword_required_num = keyword.required_num
    (keyword_required_num...total_kwargs).each do |callee_idx|
      already_passed = false
      callee_kwarg = callee_kwargs[callee_idx]

      caller_keyword_len.times do |caller_idx|
        if caller_kwargs[caller_idx] == callee_kwarg
          already_passed = true
          break
        end
      end

      unless already_passed
        # Reserve space on the stack for each default value we'll be
        # filling in (which is done in the next loop). Also increments
        # argc so that the callee's SP is recorded correctly.
        argc += 1
        default_arg = ctx.stack_push(Type::Unknown)

        # callee_idx - keyword->required_num is used in a couple of places below.
        req_num = keyword.required_num
        extra_args = callee_idx - req_num

        # VALUE default_value = keyword->default_values[callee_idx - keyword->required_num];
        default_value = keyword.default_values[extra_args]

        if default_value == Qundef
          # Qundef means that this value is not constant and must be
          # recalculated at runtime, so we record it in unspecified_bits
          # (Qnil is then used as a placeholder instead of Qundef).
          unspecified_bits |= 0x01 << extra_args
          default_value = Qnil
        end

        asm.mov(:rax, default_value)
        asm.mov(default_arg, :rax)

        caller_kwargs[kwarg_idx] = callee_kwarg
        kwarg_idx += 1
      end
    end

    assert_equal(kwarg_idx, total_kwargs)

    # Next, we're going to loop through every keyword that was
    # specified by the caller and make sure that it's in the correct
    # place. If it's not we're going to swap it around with another one.
    total_kwargs.times do |kwarg_idx|
      callee_kwarg = callee_kwargs[kwarg_idx]

      # If the argument is already in the right order, then we don't
      # need to generate any code since the expected value is already
      # in the right place on the stack.
      if callee_kwarg == caller_kwargs[kwarg_idx]
        next
      end

      # In this case the argument is not in the right place, so we
      # need to find its position where it _should_ be and swap with
      # that location.
      ((kwarg_idx + 1)...total_kwargs).each do |swap_idx|
        if callee_kwarg == caller_kwargs[swap_idx]
          # First we're going to generate the code that is going
          # to perform the actual swapping at runtime.
          offset0 = argc - 1 - swap_idx - args_before_kw
          offset1 = argc - 1 - kwarg_idx - args_before_kw
          stack_swap(jit, ctx, asm, offset0, offset1)

          # Next we're going to do some bookkeeping on our end so
          # that we know the order that the arguments are
          # actually in now.
          caller_kwargs[kwarg_idx], caller_kwargs[swap_idx] =
            caller_kwargs[swap_idx], caller_kwargs[kwarg_idx]

          break
        end
      end
    end

    # Keyword arguments cause a special extra local variable to be
    # pushed onto the stack that represents the parameters that weren't
    # explicitly given a value and have a non-constant default.
    asm.mov(ctx.stack_opnd(-1), C.to_value(unspecified_bits))
  end

  # Same as vm_callee_setup_block_arg_arg0_check and vm_callee_setup_block_arg_arg0_splat
  # on vm_callee_setup_block_arg for arg_setup_block. This is done after CALLER_SETUP_ARG
  # and CALLER_REMOVE_EMPTY_KW_SPLAT, so this implementation is put here. This may need
  # side exits, so you still need to allow side exits here if block_arg0_splat is true.
  # Note that you can't have side exits after this arg0 splat.
  if block_arg0_splat
    asm.incr_counter(:send_iseq_block_arg0_splat)
    return CantCompile
  end

  # Create a context for the callee
  callee_ctx = Context.new

  # Set the argument types in the callee's context
  argc.times do |arg_idx|
    stack_offs = argc - arg_idx - 1
    arg_type = ctx.get_opnd_type(StackOpnd[stack_offs])
    callee_ctx.set_local_type(arg_idx, arg_type)
  end

  recv_type = if calling.block_handler == :captured
    Type::Unknown # we don't track the type information of captured->self for now
  else
    ctx.get_opnd_type(StackOpnd[argc])
  end
  callee_ctx.upgrade_opnd_type(SelfOpnd, recv_type)

  # Setup the new frame
  frame_type ||= C::VM_FRAME_MAGIC_METHOD | C::VM_ENV_FLAG_LOCAL
  jit_push_frame(
    jit, ctx, asm, cme, flags, argc, frame_type, calling.block_handler,
    iseq:       iseq,
    local_size: num_locals,
    stack_max:  iseq.body.stack_max,
    prev_ep:,
    doing_kw_call:,
  )

  # Directly jump to the entry point of the callee
  pc = (iseq.body.iseq_encoded + start_pc_offset).to_i
  jit_direct_jump(iseq, pc, callee_ctx, asm)

  EndBlock
end
jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) 单击以切换源代码

vm_call_ivar (+ vm_call_method_each_type 的一部分) @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5308
def jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd)
  argc = calling.argc
  flags = calling.flags

  if flags & C::VM_CALL_ARGS_SPLAT != 0
    asm.incr_counter(:send_ivar_splat)
    return CantCompile
  end

  if argc != 0
    asm.incr_counter(:send_arity)
    return CantCompile
  end

  # We don't support handle_opt_send_shift_stack for this yet.
  if flags & C::VM_CALL_OPT_SEND != 0
    asm.incr_counter(:send_ivar_opt_send)
    return CantCompile
  end

  ivar_id = cme.def.body.attr.id

  # Not handling block_handler
  if flags & C::VM_CALL_ARGS_BLOCKARG != 0
    asm.incr_counter(:send_block_arg)
    return CantCompile
  end

  jit_getivar(jit, ctx, asm, comptime_recv, ivar_id, recv_opnd, StackOpnd[0])
end
jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class) 单击以切换源代码

vm_call_method @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler] @param send_shift [Integer] VM_CALL_OPT_SEND 需要的 shift 数量

# File ruby_vm/rjit/insn_compiler.rb, line 4317
def jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class)
  # The main check of vm_call_method before vm_call_method_each_type
  case C::METHOD_ENTRY_VISI(cme)
  in C::METHOD_VISI_PUBLIC
    # You can always call public methods
  in C::METHOD_VISI_PRIVATE
    # Allow only callsites without a receiver
    if calling.flags & C::VM_CALL_FCALL == 0
      asm.incr_counter(:send_private)
      return CantCompile
    end
  in C::METHOD_VISI_PROTECTED
    # If the method call is an FCALL, it is always valid
    if calling.flags & C::VM_CALL_FCALL == 0
      # otherwise we need an ancestry check to ensure the receiver is valid to be called as protected
      jit_protected_callee_ancestry_guard(asm, cme, side_exit(jit, ctx))
    end
  end

  # Get a compile-time receiver
  recv_idx = calling.argc + (calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # blockarg is not popped yet
  recv_idx += calling.send_shift
  comptime_recv = jit.peek_at_stack(recv_idx)
  recv_opnd = ctx.stack_opnd(recv_idx)

  jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
end
jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) 单击以切换源代码

vm_call_method_each_type @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 4364
def jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
  case cme.def.type
  in C::VM_METHOD_TYPE_ISEQ
    iseq = def_iseq_ptr(cme.def)
    jit_call_iseq(jit, ctx, asm, cme, calling, iseq)
  in C::VM_METHOD_TYPE_NOTIMPLEMENTED
    asm.incr_counter(:send_notimplemented)
    return CantCompile
  in C::VM_METHOD_TYPE_CFUNC
    jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class:)
  in C::VM_METHOD_TYPE_ATTRSET
    jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd)
  in C::VM_METHOD_TYPE_IVAR
    jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd)
  in C::VM_METHOD_TYPE_MISSING
    asm.incr_counter(:send_missing)
    return CantCompile
  in C::VM_METHOD_TYPE_BMETHOD
    jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
  in C::VM_METHOD_TYPE_ALIAS
    jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class)
  in C::VM_METHOD_TYPE_OPTIMIZED
    jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class)
  in C::VM_METHOD_TYPE_UNDEF
    asm.incr_counter(:send_undef)
    return CantCompile
  in C::VM_METHOD_TYPE_ZSUPER
    asm.incr_counter(:send_zsuper)
    return CantCompile
  in C::VM_METHOD_TYPE_REFINED
    asm.incr_counter(:send_refined)
    return CantCompile
  end
end
jit_call_opt_call(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:) 单击以切换源代码

vm_call_opt_call @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5444
def jit_call_opt_call(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:)
  if block_handler != C::VM_BLOCK_HANDLER_NONE
    asm.incr_counter(:send_optimized_call_block)
    return CantCompile
  end

  if flags & C::VM_CALL_KWARG != 0
    asm.incr_counter(:send_optimized_call_kwarg)
    return CantCompile
  end

  if flags & C::VM_CALL_ARGS_SPLAT != 0
    asm.incr_counter(:send_optimized_call_splat)
    return CantCompile
  end

  # TODO: implement this
  # Optimize for single ractor mode and avoid runtime check for
  # "defined with an un-shareable Proc in a different Ractor"
  # if !assume_single_ractor_mode(jit, ocb)
  #   return CantCompile
  # end

  # If this is a .send call we need to adjust the stack
  if flags & C::VM_CALL_OPT_SEND != 0
    handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
  end

  # About to reset the SP, need to load this here
  recv_idx = argc # blockarg is not supported. send_shift is already handled.
  asm.mov(:rcx, ctx.stack_opnd(recv_idx)) # recv

  # Save the PC and SP because the callee can make Ruby calls
  jit_prepare_routine_call(jit, ctx, asm) # NOTE: clobbers rax

  asm.lea(:rax, ctx.sp_opnd(0)) # sp

  kw_splat = flags & C::VM_CALL_KW_SPLAT

  asm.mov(C_ARGS[0], :rcx)
  asm.mov(C_ARGS[1], EC)
  asm.mov(C_ARGS[2], argc)
  asm.lea(C_ARGS[3], [:rax, -argc * C.VALUE.size]) # stack_argument_pointer. NOTE: C_ARGS[3] is rcx
  asm.mov(C_ARGS[4], kw_splat)
  asm.mov(C_ARGS[5], C::VM_BLOCK_HANDLER_NONE)
  asm.call(C.rjit_optimized_call)

  ctx.stack_pop(argc + 1)

  stack_ret = ctx.stack_push(Type::Unknown)
  asm.mov(stack_ret, C_RET)
  return KeepCompiling
end
jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class) 单击以切换源代码

vm_call_opt_send @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5418
def jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class)
  if jit_caller_setup_arg(jit, ctx, asm, calling.flags) == CantCompile
    return CantCompile
  end

  if calling.argc == 0
    asm.incr_counter(:send_optimized_send_no_args)
    return CantCompile
  end

  calling.argc -= 1
  # We aren't handling `send(:send, ...)` yet. This might work, but not tested yet.
  if calling.send_shift > 0
    asm.incr_counter(:send_optimized_send_send)
    return CantCompile
  end
  # Lazily handle stack shift in handle_opt_send_shift_stack
  calling.send_shift += 1

  jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, C::VM_CALL_FCALL)
end
jit_call_opt_struct_aref(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:) 单击以切换源代码

vm_call_opt_struct_aref @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5502
def jit_call_opt_struct_aref(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:)
  if argc != 0
    asm.incr_counter(:send_optimized_struct_aref_error)
    return CantCompile
  end

  if c_method_tracing_currently_enabled?
    # Don't JIT if tracing c_call or c_return
    asm.incr_counter(:send_cfunc_tracing)
    return CantCompile
  end

  off = cme.def.body.optimized.index

  recv_idx = argc # blockarg is not supported
  recv_idx += send_shift
  comptime_recv = jit.peek_at_stack(recv_idx)

  # This is a .send call and we need to adjust the stack
  if flags & C::VM_CALL_OPT_SEND != 0
    handle_opt_send_shift_stack(asm, argc, ctx, send_shift:)
  end

  # All structs from the same Struct class should have the same
  # length. So if our comptime_recv is embedded all runtime
  # structs of the same class should be as well, and the same is
  # true of the converse.
  embedded = C::FL_TEST_RAW(comptime_recv, C::RSTRUCT_EMBED_LEN_MASK)

  asm.comment('struct aref')
  asm.mov(:rax, ctx.stack_pop(1)) # recv

  if embedded
    asm.mov(:rax, [:rax, C.RStruct.offsetof(:as, :ary) + (C.VALUE.size * off)])
  else
    asm.mov(:rax, [:rax, C.RStruct.offsetof(:as, :heap, :ptr)])
    asm.mov(:rax, [:rax, C.VALUE.size * off])
  end

  ret = ctx.stack_push(Type::Unknown)
  asm.mov(ret, :rax)

  jump_to_next_insn(jit, ctx, asm)
  EndBlock
end
jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class) 单击以切换源代码

vm_call_optimized @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5391
def jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class)
  if calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0
    # Not working yet
    asm.incr_counter(:send_block_arg)
    return CantCompile
  end

  case cme.def.body.optimized.type
  in C::OPTIMIZED_METHOD_TYPE_SEND
    jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class)
  in C::OPTIMIZED_METHOD_TYPE_CALL
    jit_call_opt_call(jit, ctx, asm, cme, calling.flags, calling.argc, calling.block_handler, known_recv_class, send_shift: calling.send_shift)
  in C::OPTIMIZED_METHOD_TYPE_BLOCK_CALL
    asm.incr_counter(:send_optimized_block_call)
    return CantCompile
  in C::OPTIMIZED_METHOD_TYPE_STRUCT_AREF
    jit_call_opt_struct_aref(jit, ctx, asm, cme, calling.flags, calling.argc, calling.block_handler, known_recv_class, send_shift: calling.send_shift)
  in C::OPTIMIZED_METHOD_TYPE_STRUCT_ASET
    asm.incr_counter(:send_optimized_struct_aset)
    return CantCompile
  end
end
jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, flags) 单击以切换源代码

vm_call_symbol @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5570
def jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, flags)
  flags |= C::VM_CALL_OPT_SEND | (calling.kw_splat ? C::VM_CALL_KW_SPLAT : 0)

  comptime_symbol = jit.peek_at_stack(calling.argc)
  if comptime_symbol.class != String && !static_symbol?(comptime_symbol)
    asm.incr_counter(:send_optimized_send_not_sym_or_str)
    return CantCompile
  end

  mid = C.get_symbol_id(comptime_symbol)
  if mid == 0
    asm.incr_counter(:send_optimized_send_null_mid)
    return CantCompile
  end

  asm.comment("Guard #{comptime_symbol.inspect} is on stack")
  class_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_class_changed)
  jit_guard_known_klass(
    jit, ctx, asm, C.rb_class_of(comptime_symbol), ctx.stack_opnd(calling.argc),
    StackOpnd[calling.argc], comptime_symbol, class_changed_exit,
  )
  asm.mov(C_ARGS[0], ctx.stack_opnd(calling.argc))
  asm.call(C.rb_get_symbol_id)
  asm.cmp(C_RET, mid)
  id_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_id_changed)
  jit_chain_guard(:jne, jit, ctx, asm, id_changed_exit)

  # rb_callable_method_entry_with_refinements
  calling.flags = flags
  cme, _ = jit_search_method(jit, ctx, asm, mid, calling)
  if cme == CantCompile
    return CantCompile
  end

  if flags & C::VM_CALL_FCALL != 0
    return jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class)
  end

  raise NotImplementedError # unreachable for now
end
jit_caller_setup_arg(jit, ctx, asm, flags) 单击以切换源代码

CALLER_SETUP_ARG:如果不支持,则返回 CantCompile @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5749
def jit_caller_setup_arg(jit, ctx, asm, flags)
  if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_KW_SPLAT != 0
    asm.incr_counter(:send_args_splat_kw_splat)
    return CantCompile
  elsif flags & C::VM_CALL_ARGS_SPLAT != 0
    # splat is not supported in this path
    asm.incr_counter(:send_args_splat)
    return CantCompile
  elsif flags & C::VM_CALL_KW_SPLAT != 0
    asm.incr_counter(:send_args_kw_splat)
    return CantCompile
  elsif flags & C::VM_CALL_KWARG != 0
    asm.incr_counter(:send_kwarg)
    return CantCompile
  end
end
jit_direct_jump(iseq, pc, ctx, asm, comment: 'jit_direct_jump') 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5955
def jit_direct_jump(iseq, pc, ctx, asm, comment: 'jit_direct_jump')
  branch_stub = BranchStub.new(
    iseq:,
    shape: Default,
    target0: BranchTarget.new(ctx:, pc:),
  )
  branch_stub.target0.address = Assembler.new.then do |ocb_asm|
    @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true)
    @ocb.write(ocb_asm)
  end
  branch_stub.compile = compile_jit_direct_jump(branch_stub, comment:)
  branch_stub.compile.call(asm)
end
jit_get_ep(asm, level, reg:) 单击以切换源代码

vm_get_ep @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 4124
def jit_get_ep(asm, level, reg:)
  asm.mov(reg, [CFP, C.rb_control_frame_t.offsetof(:ep)])
  level.times do
    # GET_PREV_EP: ep[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03
    asm.mov(reg, [reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL])
    asm.and(reg, ~0x03)
  end
end
jit_get_lep(jit, asm, reg:) 单击以切换源代码

GET_LEP @param jit [RubyVM::RJIT::JITState] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 4117
def jit_get_lep(jit, asm, reg:)
  level = get_lvar_level(jit.iseq)
  jit_get_ep(asm, level, reg:)
end
jit_getivar(jit, ctx, asm, comptime_obj, ivar_id, obj_opnd, obj_yarv_opnd) 单击以切换源代码

vm_getivar @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 4137
def jit_getivar(jit, ctx, asm, comptime_obj, ivar_id, obj_opnd, obj_yarv_opnd)
  side_exit = side_exit(jit, ctx)
  starting_ctx = ctx.dup # copy for jit_chain_guard

  # Guard not special const
  if C::SPECIAL_CONST_P(comptime_obj)
    asm.incr_counter(:getivar_special_const)
    return CantCompile
  end

  case C::BUILTIN_TYPE(comptime_obj)
  when C::T_OBJECT
    # This is the only supported case for now (ROBJECT_IVPTR)
  else
    # General case. Call rb_ivar_get().
    # VALUE rb_ivar_get(VALUE obj, ID id)
    asm.comment('call rb_ivar_get()')
    asm.mov(C_ARGS[0], obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)])
    asm.mov(C_ARGS[1], ivar_id)

    # The function could raise exceptions.
    jit_prepare_routine_call(jit, ctx, asm) # clobbers obj_opnd and :rax

    asm.call(C.rb_ivar_get)

    if obj_opnd # attr_reader
      ctx.stack_pop
    end

    # Push the ivar on the stack
    out_opnd = ctx.stack_push(Type::Unknown)
    asm.mov(out_opnd, C_RET)

    # Jump to next instruction. This allows guard chains to share the same successor.
    jump_to_next_insn(jit, ctx, asm)
    return EndBlock
  end

  asm.mov(:rax, obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)])
  guard_object_is_heap(jit, ctx, asm, :rax, obj_yarv_opnd, :getivar_not_heap)

  shape_id = C.rb_shape_get_shape_id(comptime_obj)
  if shape_id == C::OBJ_TOO_COMPLEX_SHAPE_ID
    asm.incr_counter(:getivar_too_complex)
    return CantCompile
  end

  asm.comment('guard shape')
  asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id)
  jit_chain_guard(:jne, jit, starting_ctx, asm, counted_exit(side_exit, :getivar_megamorphic))

  if obj_opnd
    ctx.stack_pop # pop receiver for attr_reader
  end

  index = C.rb_shape_get_iv_index(shape_id, ivar_id)
  # If there is no IVAR index, then the ivar was undefined
  # when we entered the compiler.  That means we can just return
  # nil for this shape + iv name
  if index.nil?
    stack_opnd = ctx.stack_push(Type::Nil)
    val_opnd = Qnil
  else
    asm.comment('ROBJECT_IVPTR')
    if C::FL_TEST_RAW(comptime_obj, C::ROBJECT_EMBED)
      # Access embedded array
      asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :ary) + (index * C.VALUE.size)])
    else
      # Pull out an ivar table on heap
      asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :heap, :ivptr)])
      # Read the table
      asm.mov(:rax, [:rax, index * C.VALUE.size])
    end
    stack_opnd = ctx.stack_push(Type::Unknown)
    val_opnd = :rax
  end
  asm.mov(stack_opnd, val_opnd)

  # Let guard chains share the same successor
  jump_to_next_insn(jit, ctx, asm)
  EndBlock
end
jit_leaf_builtin_func(jit, ctx, asm, flags, iseq) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 4980
def jit_leaf_builtin_func(jit, ctx, asm, flags, iseq)
  builtin_func = builtin_function(iseq)
  if builtin_func.nil?
    return false
  end

  # this is a .send call not currently supported for builtins
  if flags & C::VM_CALL_OPT_SEND != 0
    return false
  end

  builtin_argc = builtin_func.argc
  if builtin_argc + 1 >= C_ARGS.size
    return false
  end

  asm.comment('inlined leaf builtin')

  # The callee may allocate, e.g. Integer#abs on a Bignum.
  # Save SP for GC, save PC for allocation tracing, and prepare
  # for global invalidation after GC's VM lock contention.
  jit_prepare_routine_call(jit, ctx, asm)

  # Call the builtin func (ec, recv, arg1, arg2, ...)
  asm.mov(C_ARGS[0], EC)

  # Copy self and arguments
  (0..builtin_argc).each do |i|
    stack_opnd = ctx.stack_opnd(builtin_argc - i)
    asm.mov(C_ARGS[i + 1], stack_opnd)
  end
  ctx.stack_pop(builtin_argc + 1)
  asm.call(builtin_func.func_ptr)

  # Push the return value
  stack_ret = ctx.stack_push(Type::Unknown)
  asm.mov(stack_ret, C_RET)
  return true
end
jit_protected_callee_ancestry_guard(asm, cme, side_exit) 单击以切换源代码

为受保护的被调用者生成祖先保护。只有当 self.is_a?(定义被调用者的类) 时,对受保护的被调用者的调用才会通过。

# File ruby_vm/rjit/insn_compiler.rb, line 4347
def jit_protected_callee_ancestry_guard(asm, cme, side_exit)
  # See vm_call_method().
  def_class = cme.defined_class
  # Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise.
  # VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass);

  asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:self)])
  asm.mov(C_ARGS[1], to_value(def_class))
  asm.call(C.rb_obj_is_kind_of)
  asm.test(C_RET, C_RET)
  asm.jz(counted_exit(side_exit, :send_protected_check_failed))
end
jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, block_handler, iseq: nil, local_size: 0, stack_max: 0, prev_ep: nil, doing_kw_call: nil) 单击以切换源代码

vm_push_frame

帧结构:| args | locals | cme/cref | block_handler/prev EP | 帧类型 (此处为 EP) | 堆栈底部 (此处为 SP)

@param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5619
def jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, block_handler, iseq: nil, local_size: 0, stack_max: 0, prev_ep: nil, doing_kw_call: nil)
  # Save caller SP and PC before pushing a callee frame for backtrace and side exits
  asm.comment('save SP to caller CFP')
  recv_idx = argc # blockarg is already popped
  recv_idx += (block_handler == :captured) ? 0 : 1 # receiver is not on stack when captured->self is used
  if iseq
    # Skip setting this to SP register. This cfp->sp will be copied to SP on leave insn.
    asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * -recv_idx)) # Pop receiver and arguments to prepare for side exits
    asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], :rax)
  else
    asm.lea(SP, ctx.sp_opnd(C.VALUE.size * -recv_idx))
    asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP)
    ctx.sp_offset = recv_idx
  end
  jit_save_pc(jit, asm, comment: 'save PC to caller CFP')

  sp_offset = ctx.sp_offset + 3 + local_size + (doing_kw_call ? 1 : 0) # callee_sp
  local_size.times do |i|
    asm.comment('set local variables') if i == 0
    local_index = sp_offset + i - local_size - 3
    asm.mov([SP, C.VALUE.size * local_index], Qnil)
  end

  asm.comment('set up EP with managing data')
  ep_offset = sp_offset - 1
  # ep[-2]: cref_or_me
  asm.mov(:rax, cme.to_i)
  asm.mov([SP, C.VALUE.size * (ep_offset - 2)], :rax)
  # ep[-1]: block handler or prev env ptr (specval)
  if prev_ep
    asm.mov(:rax, prev_ep.to_i | 1) # tagged prev ep
    asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax)
  elsif block_handler == :captured
    # Set captured->ep, saving captured in :rcx for captured->self
    ep_reg = :rcx
    jit_get_lep(jit, asm, reg: ep_reg)
    asm.mov(:rcx, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler
    asm.and(:rcx, ~0x3) # captured
    asm.mov(:rax, [:rcx, C.VALUE.size]) # captured->ep
    asm.or(:rax, 0x1) # GC_GUARDED_PTR
    asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax)
  elsif block_handler == C::VM_BLOCK_HANDLER_NONE
    asm.mov([SP, C.VALUE.size * (ep_offset - 1)], C::VM_BLOCK_HANDLER_NONE)
  elsif block_handler == C.rb_block_param_proxy
    # vm_caller_setup_arg_block: block_code == rb_block_param_proxy
    jit_get_lep(jit, asm, reg: :rax) # VM_CF_BLOCK_HANDLER: VM_CF_LEP
    asm.mov(:rax, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # VM_CF_BLOCK_HANDLER: VM_ENV_BLOCK_HANDLER
    asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax) # reg_cfp->block_code = handler
    asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) # return handler;
  else # assume blockiseq
    asm.mov(:rax, block_handler)
    asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax)
    asm.lea(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # VM_CFP_TO_CAPTURED_BLOCK
    asm.or(:rax, 1) # VM_BH_FROM_ISEQ_BLOCK
    asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax)
  end
  # ep[-0]: ENV_FLAGS
  asm.mov([SP, C.VALUE.size * (ep_offset - 0)], frame_type)

  asm.comment('set up new frame')
  cfp_offset = -C.rb_control_frame_t.size # callee CFP
  # For ISEQ, JIT code will set it as needed. However, C func needs 0 there for svar frame detection.
  if iseq.nil?
    asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:pc)], 0)
  end
  asm.mov(:rax, iseq.to_i)
  asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:iseq)], :rax)
  if block_handler == :captured
    asm.mov(:rax, [:rcx]) # captured->self
  else
    self_index = ctx.sp_offset - (1 + argc) # blockarg has been popped
    asm.mov(:rax, [SP, C.VALUE.size * self_index])
  end
  asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:self)], :rax)
  asm.lea(:rax, [SP, C.VALUE.size * ep_offset])
  asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:ep)], :rax)
  asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:block_code)], 0)
  # Update SP register only for ISEQ calls. SP-relative operations should be done above this.
  sp_reg = iseq ? SP : :rax
  asm.lea(sp_reg, [SP, C.VALUE.size * sp_offset])
  asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:sp)], sp_reg)

  # cfp->jit_return is used only for ISEQs
  if iseq
    # The callee might change locals through Kernel#binding and other means.
    ctx.clear_local_types

    # Stub cfp->jit_return
    return_ctx = ctx.dup
    return_ctx.stack_pop(argc + ((block_handler == :captured) ? 0 : 1)) # Pop args and receiver. blockarg has been popped
    return_ctx.stack_push(Type::Unknown) # push callee's return value
    return_ctx.sp_offset = 1 # SP is in the position after popping a receiver and arguments
    return_ctx.chain_depth = 0
    branch_stub = BranchStub.new(
      iseq: jit.iseq,
      shape: Default,
      target0: BranchTarget.new(ctx: return_ctx, pc: jit.pc + jit.insn.len * C.VALUE.size),
    )
    branch_stub.target0.address = Assembler.new.then do |ocb_asm|
      @exit_compiler.compile_branch_stub(return_ctx, ocb_asm, branch_stub, true)
      @ocb.write(ocb_asm)
    end
    branch_stub.compile = compile_jit_return(branch_stub, cfp_offset:)
    branch_stub.compile.call(asm)
  end

  asm.comment('switch to callee CFP')
  # Update CFP register only for ISEQ calls
  cfp_reg = iseq ? CFP : :rax
  asm.lea(cfp_reg, [CFP, cfp_offset])
  asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], cfp_reg)
end
jit_search_method(jit, ctx, asm, mid, calling) 单击以切换源代码

vm_search_method @param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 4268
def jit_search_method(jit, ctx, asm, mid, calling)
  assert_equal(true, jit.at_current_insn?)

  # Generate a side exit
  side_exit = side_exit(jit, ctx)

  # kw_splat is not supported yet
  if calling.flags & C::VM_CALL_KW_SPLAT != 0
    asm.incr_counter(:send_kw_splat)
    return CantCompile
  end

  # Get a compile-time receiver and its class
  recv_idx = calling.argc + (calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # blockarg is not popped yet
  recv_idx += calling.send_shift
  comptime_recv = jit.peek_at_stack(recv_idx)
  comptime_recv_klass = C.rb_class_of(comptime_recv)

  # Guard the receiver class (part of vm_search_method_fastpath)
  recv_opnd = ctx.stack_opnd(recv_idx)
  megamorphic_exit = counted_exit(side_exit, :send_klass_megamorphic)
  jit_guard_known_klass(jit, ctx, asm, comptime_recv_klass, recv_opnd, StackOpnd[recv_idx], comptime_recv, megamorphic_exit)

  # Do method lookup (vm_cc_cme(cc) != NULL)
  cme = C.rb_callable_method_entry(comptime_recv_klass, mid)
  if cme.nil?
    asm.incr_counter(:send_missing_cme)
    return CantCompile # We don't support vm_call_method_name
  end

  # Invalidate on redefinition (part of vm_search_method_fastpath)
  Invariants.assume_method_lookup_stable(jit, cme)

  return cme, comptime_recv_klass
end
jit_write_iv(asm, comptime_receiver, recv_reg, temp_reg, ivar_index, set_value, needs_extension) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 4220
def jit_write_iv(asm, comptime_receiver, recv_reg, temp_reg, ivar_index, set_value, needs_extension)
  # Compile time self is embedded and the ivar index lands within the object
  embed_test_result = C::FL_TEST_RAW(comptime_receiver, C::ROBJECT_EMBED) && !needs_extension

  if embed_test_result
    # Find the IV offset
    offs = C.RObject.offsetof(:as, :ary) + ivar_index * C.VALUE.size

    # Write the IV
    asm.comment('write IV')
    asm.mov(temp_reg, set_value)
    asm.mov([recv_reg, offs], temp_reg)
  else
    # Compile time value is *not* embedded.

    # Get a pointer to the extended table
    asm.mov(recv_reg, [recv_reg, C.RObject.offsetof(:as, :heap, :ivptr)])

    # Write the ivar in to the extended table
    asm.comment("write IV");
    asm.mov(temp_reg, set_value)
    asm.mov([recv_reg, C.VALUE.size * ivar_index], temp_reg)
  end
end
move_rest_args_to_stack(array, num_args, jit, ctx, asm) 单击以切换源代码

将参数从数组推送到堆栈。与 push splat 不同,因为数组可以保留剩余的项目。@param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5771
def move_rest_args_to_stack(array, num_args, jit, ctx, asm)
  side_exit = side_exit(jit, ctx)

  asm.comment('move_rest_args_to_stack')

  # array is :rax
  array_len_opnd = :rcx
  jit_array_len(asm, array, array_len_opnd)

  asm.comment('Side exit if length is less than required')
  asm.cmp(array_len_opnd, num_args)
  asm.jl(counted_exit(side_exit, :send_iseq_has_rest_and_splat_not_equal))

  asm.comment('Push arguments from array')

  # Load the address of the embedded array
  # (struct RArray *)(obj)->as.ary
  array_reg = array

  # Conditionally load the address of the heap array
  # (struct RArray *)(obj)->as.heap.ptr
  flags_opnd = [array_reg, C.RBasic.offsetof(:flags)]
  asm.test(flags_opnd, C::RARRAY_EMBED_FLAG)
  heap_ptr_opnd = [array_reg, C.RArray.offsetof(:as, :heap, :ptr)]
  # Load the address of the embedded array
  # (struct RArray *)(obj)->as.ary
  ary_opnd = :rdx # NOTE: array :rax is used after move_rest_args_to_stack too
  asm.lea(:rcx, [array_reg, C.RArray.offsetof(:as, :ary)])
  asm.mov(ary_opnd, heap_ptr_opnd)
  asm.cmovnz(ary_opnd, :rcx)

  num_args.times do |i|
    top = ctx.stack_push(Type::Unknown)
    asm.mov(:rcx, [ary_opnd, i * C.VALUE.size])
    asm.mov(top, :rcx)
  end
end
push_splat_args(required_args, jit, ctx, asm) 单击以切换源代码

vm_caller_setup_arg_splat (+ CALLER_SETUP_ARG):将使用 splat (即 *args) 传递的参数从数组推送到堆栈。它乐观地编译为静态大小,该大小是该函数所需的准确参数数量。@param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context] @param asm [RubyVM::RJIT::Assembler]

# File ruby_vm/rjit/insn_compiler.rb, line 5815
def push_splat_args(required_args, jit, ctx, asm)
  side_exit = side_exit(jit, ctx)

  asm.comment('push_splat_args')

  array_opnd = ctx.stack_opnd(0)
  array_stack_opnd = StackOpnd[0]
  array_reg = :rax
  asm.mov(array_reg, array_opnd)

  guard_object_is_array(jit, ctx, asm, array_reg, :rcx, array_stack_opnd, :send_args_splat_not_array)

  array_len_opnd = :rcx
  jit_array_len(asm, array_reg, array_len_opnd)

  asm.comment('Side exit if length is not equal to remaining args')
  asm.cmp(array_len_opnd, required_args)
  asm.jne(counted_exit(side_exit, :send_args_splat_length_not_equal))

  asm.comment('Check last argument is not ruby2keyword hash')

  ary_opnd = :rcx
  jit_array_ptr(asm, array_reg, ary_opnd) # clobbers array_reg

  last_array_value = :rax
  asm.mov(last_array_value, [ary_opnd, (required_args - 1) * C.VALUE.size])

  ruby2_exit = counted_exit(side_exit, :send_args_splat_ruby2_hash);
  guard_object_is_not_ruby2_keyword_hash(asm, last_array_value, :rcx, ruby2_exit) # clobbers :rax

  asm.comment('Push arguments from array')
  array_opnd = ctx.stack_pop(1)

  if required_args > 0
    # Load the address of the embedded array
    # (struct RArray *)(obj)->as.ary
    array_reg = :rax
    asm.mov(array_reg, array_opnd)

    # Conditionally load the address of the heap array
    # (struct RArray *)(obj)->as.heap.ptr
    flags_opnd = [array_reg, C.RBasic.offsetof(:flags)]
    asm.test(flags_opnd, C::RARRAY_EMBED_FLAG)
    heap_ptr_opnd = [array_reg, C.RArray.offsetof(:as, :heap, :ptr)]
    # Load the address of the embedded array
    # (struct RArray *)(obj)->as.ary
    asm.lea(:rcx, [array_reg, C.RArray.offsetof(:as, :ary)])
    asm.mov(:rax, heap_ptr_opnd)
    asm.cmovnz(:rax, :rcx)
    ary_opnd = :rax

    (0...required_args).each do |i|
      top = ctx.stack_push(Type::Unknown)
      asm.mov(:rcx, [ary_opnd, i * C.VALUE.size])
      asm.mov(top, :rcx)
    end

    asm.comment('end push_each')
  end
end
shape_too_complex?(obj) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5939
def shape_too_complex?(obj)
  C.rb_shape_get_shape_id(obj) == C::OBJ_TOO_COMPLEX_SHAPE_ID
end
side_exit(jit, ctx) 单击以切换源代码

@param jit [RubyVM::RJIT::JITState] @param ctx [RubyVM::RJIT::Context]

# File ruby_vm/rjit/insn_compiler.rb, line 5985
def side_exit(jit, ctx)
  # We use the latest ctx.sp_offset to generate a side exit to tolerate sp_offset changes by jit_save_sp.
  # However, we want to simulate an old stack_size when we take a side exit. We do that by adjusting the
  # sp_offset because gen_outlined_exit uses ctx.sp_offset to move SP.
  ctx = ctx.with_stack_size(jit.stack_size_for_pc)

  jit.side_exit_for_pc[ctx.sp_offset] ||= Assembler.new.then do |asm|
    @exit_compiler.compile_side_exit(jit.pc, ctx, asm)
    @ocb.write(asm)
  end
end
static_symbol?(obj) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5930
def static_symbol?(obj)
  (C.to_value(obj) & 0xff) == C::RUBY_SYMBOL_FLAG
end
symbol?(obj) 单击以切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 5926
def symbol?(obj)
  static_symbol?(obj) || dynamic_symbol?(obj)
end
to_value(obj) 点击切换源代码
# File ruby_vm/rjit/insn_compiler.rb, line 6008
def to_value(obj)
  GC_REFS << obj
  C.to_value(obj)
end